

SDLTRACE FOR COBOL
User Guide

©2018 SOFTWARE DESIGN LOHSSE GMBH

SDLTRACE FOR COBOL

User Guide

 - 1 -

Introduction to Trace Facility for COBOL 2

Chapter 1. Tracing a simple COBOL program 2
Chapter 2. Tracing PERFORMs, labels, etc. 10
Chapter 3. Tracing variables with indices 16
Chapter 4. Measuring execution times 18
Chapter 5. Controlling the allocation of trace datasets 22

Introduction to Logging Facility for COBOL 29

Chapter 1. Preparing a COBOL program for logging 29
Chapter 2. Controlling the allocation of log datasets 38
Chapter 3. Logging large data items 51
Chapter 4. Measuring execution times 60
Chapter 5. Determining the names of calling programs 70
Chapter 6. Obtaining the current log-record 78
Chapter 7. Direct logging of an application program 81
Chapter 8. Differences between tracing and logging 87

SDLTRACE FOR COBOL

User Guide

 - 2 -

Introduction to Trace Facility for COBOL

For every COBOL programmer the DISPLAY statement is probably the easiest and most often used
method to get information about the behavior of a program. In a sense SDLTRACE is an extension of that
procedure: At relevant places in a program calls to SDLTRACE are inserted, and the trace module
records the information provided together with additional information necessary for later analysis. The
data is written to datasets which are automatically allocated by SDLTRACE and managed in such a
way that recording can go on indefinitely. No changes to the runtime JCL is needed, and the environment
can be anything from simple batch, to CICS, IMS, DB/2, WLM, etc.. For analysis, the recorded data can
be merged and sorted, such that events in completely separated subsystems can be correlated to each
other, since each event is tagged with the exact time it occurred. Thus even widely distributed application
systems can be analyzed and possible sources of malfunction identified.

Chapter 1. Tracing a simple COBOL program

There are six small programs provided in the COBOL library to show how to use the trace facility.
You may need to edit the job cards of the members in dataset “user-id”.SDLTRACE.DEMO.COBOL
before submitting the jobs, for example to insert accounting information required by your installation.

In the following module (SAMPLB01 in library „user-id“.SDLTRACE.DEMO.COBOL) just a few MOVE
statements are being executed. As stored in the library, the module also contains all necessary JCL to
compile, link and run it. The COBOL code (without JCL) is as follows:

 ID DIVISION.

 PROGRAM-ID SAMPLB01.

 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 CHARACTER-DATA PIC X(20) VALUE SPACE.
 01 CHARACTER-DATA-LONG PIC X(256) VALUE SPACE.
 01 NUMERIC-DATA-UNSIGNED PIC 9(8) VALUE ZERO.
 01 NUMERIC-DATA-SIGNED-POS PIC S9(8) VALUE ZERO.
 01 NUMERIC-DATA-SIGNED-NEG PIC S9(8) VALUE ZERO.
 01 DECIMAL-DATA-UNSIGNED PIC 9(7) COMP-3 VALUE ZERO.
 01 DECIMAL-DATA-SIGNED-POS PIC S9(7) COMP-3 VALUE ZERO.
 01 DECIMAL-DATA-SIGNED-NEG PIC S9(7) COMP-3 VALUE ZERO.
 01 BINARY-DATA PIC S9(9) BINARY VALUE ZERO.

 PROCEDURE DIVISION.
 MOVE 'Hello, COBOL!' TO CHARACTER-DATA
 MOVE 'This is character data that extends over more than one
 - 'line and shows how data is displayed on several lines'
 TO CHARACTER-DATA-LONG
 MOVE 123 TO NUMERIC-DATA-UNSIGNED
 MOVE 456 TO NUMERIC-DATA-SIGNED-POS
 MOVE -789 TO NUMERIC-DATA-SIGNED-NEG
 MOVE 123 TO DECIMAL-DATA-UNSIGNED
 MOVE 456 TO DECIMAL-DATA-SIGNED-POS
 MOVE -789 TO DECIMAL-DATA-SIGNED-NEG
 MOVE 123456789 TO BINARY-DATA
 GOBACK.

 END PROGRAM SAMPLB01.

SDLTRACE FOR COBOL

User Guide

 - 3 -

The program does not do much: It executes the assignment statements and returns, no output is
produced. To set up this module for execution with tracing just go into ISPF panel 3.4, display the
members of „user-id“.SDLTRACE.DEMO.CNTL, step down to member ATRACE and type “ex” (short for
“exec”) in front of it. The following panel will be displayed (make sure that the PF key display is turned off
beforehand by entering pfshow off on the ISPF primary option menu):

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 1 of 1
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id SDLTRACE.DEMO.COBOL_________________
Input member SAMPLB01
Output member SAMPLBX1 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode T (T/L)
Application-ID SDLAPPL1 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 5___ (0-1440) Trace variables Y (Y/N)

Count duplicates Y (Y/N) Include string #1 ______________________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE N (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

This panel is used to specify parameters for the COBOL SDLTRACE pre-processor “SDLPREP”, a REXX
program that scans the module to be traced. There are two modes of operation for this pre-processor:
batch and TSO. In batch mode a job is prepared that can be submitted for execution. In TSO mode the
pre-processor is called directly from the panel. Selection between the two modes is made by specifying “j”
or “x” respectively in the top right entry field on the panel. In the following examples we will always use “x”
followed by the “Enter” key to submit the panel for execution.

There may be up to nine copies of the panel with different parameters that are stored in the user’s ISPF
profile dataset, and the letters “n” and “p” may be used to switch between them. A panel that is not
needed anymore can be deleted by specifying “d”. Lower case entries are automatically translated to
upper case.

When the panel above is executed by entering “x” and hitting the “Enter” key, the following messages
will be generated for the input values on the panel above, (provided that the values in your panel which
you submit for execution are identical to those shown above):

SDLTRACE - Version 4.5.23 14 Mar 2015 08:11:38 user-id
SDLTRACE - Parameter file: „user-id“.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=TRACE
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: SAMPLB01
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: SAMPLBX1
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 57
SDLTRACE - MOVE TO variables: 9
SDLTRACE - Number of lines inserted: 188
SDLTRACE - Number of lines with trace: 245

SDLTRACE FOR COBOL

User Guide

 - 4 -

SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

Identical output would be produced of course by selecting “j” and then submitting the generated job,
which is executing the pre-processor in batch. In each case the parameters for execution of SDLPREP
are transferred from the panel to “SDLPRCTL”, which is used by SDLPREP during execution.

The usual action for SDLPREP is INSERT, which means to prepare a module for tracing, whereas
REMOVE is the exact opposite, namely removing all previously inserted trace statements to reproduce
the original program again. The third action which may be specified is EDIT, a combination of REMOVE
and INSERT. Since it is easier to work on a program when it is in its original form (without any trace
statements present), it is advisable to remove the trace code before editing the program, and then insert
the trace code again before the next compilation. This action is performed automatically with the EDIT
function, which removes any trace statements before displaying the code for editing, and, after leaving
the SPF-edit with PF3, reinserts the trace statements and again displays the program for further action. If
JCL is part of the member (as in the sample modules) then the program may be submitted directly for
translation and execution.

In the example above INSERT is specified to add code that will trace all variables whose values are
changed by MOVE statements. The number of lines in the original is 57, which is the total number of lines
in the input member SAMPLB01 including the JCL. There are 9 MOVE statements and a total of 188 lines
are added to the code resulting in altogether 245 lines which are stored in output module SAMPLBX1.

If TSO mode (entry “x” on the panel) is used to invoke the pre-processor, then the changed source
module will be displayed in the ISPF editor so that the inserted code can be reviewed and edited if
necessary. The original COBOL program as changed during processing with the settings from the panel
above now looks like this:

 ID DIVISION.

 PROGRAM-ID SAMPLB01.

 DATA DIVISION.

 WORKING-STORAGE SECTION.
SDL#***--***
SDL#Y 01 SDLTR-PARM GLOBAL.
SDL#Y 05 SDLTR-VALIDCHK-A PIC X(8) VALUE 'SDLTRACE'.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VERSION PIC X(8) VALUE 'VER 4.5 '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-DSN-HILEVEL PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-APPL-ID PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PGMNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-JOBNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TYPE PIC X(5) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TEXT PIC X(50) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-START PIC X(8) VALUE 'PERFORM '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-END PIC X(8) VALUE '--END-- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-LABEL PIC X(8) VALUE '------- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PRI-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-SEC-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-VAR-LENGTH PIC 9(4) VALUE 31 BINARY.

SDLTRACE FOR COBOL

User Guide

 - 5 -

SDL#Y 05 SDLTR-FLD-LENGTH PIC 9(4) VALUE 13 BINARY.
SDL#Y 05 SDLTR-THRESHOLD PIC 9(4) VALUE 0 BINARY.
SDL#Y 05 SDLTR-NEWTIM PIC 9(4) VALUE 1440 BINARY.
SDL#Y 05 SDLTR-RETN-CODE PIC 9(2) VALUE 0.
SDL#Y 05 SDLTR-RETN-CBIN PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TRACE PIC 9(1) VALUE 1.
SDL#Y 88 SDLTR-TRACE-ON VALUE 1.
SDL#Y 88 SDLTR-TRACE-OFF VALUE 0.
SDL#Y 05 SDLTR-CALLER PIC X(1) VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-ASM VALUE 'A'.
SDL#Y 88 SDLTR-CALLER-COBOL VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-C VALUE 'C'.
SDL#Y 05 SDLTR-VAR-TYPE PIC X(1) VALUE SPACE.
SDL#Y 88 SDLTR-VAR-TYPE-ALL VALUE ' '.
SDL#Y 88 SDLTR-VAR-TYPE-BIN VALUE 'B'.
SDL#Y 88 SDLTR-VAR-TYPE-CHR VALUE 'C'.
SDL#Y 88 SDLTR-VAR-TYPE-DEC VALUE 'D'.
SDL#Y 88 SDLTR-VAR-TYPE-HEX VALUE 'X'.
SDL#Y 05 SDLTR-TIMESTAMP PIC X(1) VALUE 'L'.
SDL#Y 88 SDLTR-TMSTP-GMT VALUE 'G'.
SDL#Y 88 SDLTR-TMSTP-LOC VALUE 'L'.
SDL#Y 05 SDLTR-WRITE-IMM PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-WRITE-IMM-ON VALUE 1.
SDL#Y 88 SDLTR-WRITE-IMM-OFF VALUE 0.
SDL#Y 05 SDLTR-CONS-MSG-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-CONS-MSG-OFF VALUE 1.
SDL#Y 88 SDLTR-CONS-MSG-ON VALUE 0.
SDL#Y 05 SDLTR-TIMING-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TIMING-ON VALUE 1.
SDL#Y 88 SDLTR-TIMING-OFF VALUE 0.
SDL#Y 05 SDLTR-TRACECTL PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TRACECTL-ON VALUE 1.
SDL#Y 88 SDLTR-TRACECTL-OFF VALUE 0.
SDL#Y 05 SDLTR-LOG-MODE-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-LOG-MODE-ON VALUE 1.
SDL#Y 88 SDLTR-LOG-MODE-OFF VALUE 0.
SDL#Y 05 SDLTR-DUPLICAT-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-DUPLICAT-ON VALUE 1.
SDL#Y 88 SDLTR-DUPLICAT-OFF VALUE 0.
SDL#Y 05 SDLTR-SKIP-NAME1 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME2 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME3 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-RESERVED PIC X(18) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SYSTEM-AREA PIC X(1800) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VALIDCHK-Z PIC X(8) VALUE 'SDLTRACE'.
SDL#Y
SDL#Y 01 SDLTR-WORK GLOBAL.
SDL#Y 05 SDLTR-LENGTH PIC S9(9) BINARY.
SDL#Y 05 SDLTR-SAVERC PIC S9(4) BINARY.
SDL#Y 05 SDLTR-INDEX1 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX2 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX1-NUM PIC 9(8).
SDL#Y 05 SDLTR-INDEX2-NUM PIC 9(8).
SDL#Y 05 SDLTR-SET-TRUE PIC X(4) VALUE 'TRUE'.
SDL#Y 05 SDLTR-GEN-DATE PIC X(11) VALUE '14 Mar 2015'.
SDL#Y 05 SDLTRACE PIC X(8) VALUE 'SDLTRACE'.
SDL#***--***
 01 CHARACTER-DATA PIC X(20) VALUE SPACE.
 01 CHARACTER-DATA-LONG PIC X(256) VALUE SPACE.
 01 NUMERIC-DATA-UNSIGNED PIC 9(8) VALUE ZERO.
 01 NUMERIC-DATA-SIGNED-POS PIC S9(8) VALUE ZERO.

SDLTRACE FOR COBOL

User Guide

 - 6 -

 01 NUMERIC-DATA-SIGNED-NEG PIC S9(8) VALUE ZERO.
 01 DECIMAL-DATA-UNSIGNED PIC 9(7) COMP-3 VALUE ZERO.
 01 DECIMAL-DATA-SIGNED-POS PIC S9(7) COMP-3 VALUE ZERO.
 01 DECIMAL-DATA-SIGNED-NEG PIC S9(7) COMP-3 VALUE ZERO.
 01 BINARY-DATA PIC S9(9) BINARY VALUE ZERO.

 PROCEDURE DIVISION.
SDL#***--***
SDL#A START-TRACE-INITIALIZATION.
SDL#S MOVE 'START' TO SDLTR-TYPE
SDL#N MOVE 'SAMPLB01' TO SDLTR-PGMNAME
SDL#K MOVE 'user-id ' TO SDLTR-DSN-HILEVEL
SDL#K MOVE 'SDLAPPL1' TO SDLTR-APPL-ID
SDL#K MOVE '* ' TO SDLTR-JOBNAME
SDL#K MOVE 0 TO SDLTR-THRESHOLD
SDL#K MOVE 100 TO SDLTR-PRI-TRKS
SDL#K MOVE 100 TO SDLTR-SEC-TRKS
SDL#K MOVE 5 TO SDLTR-NEWTIM
SDL#K SET SDLTR-WRITE-IMM-OFF TO TRUE
SDL#K SET SDLTR-TRACECTL-OFF TO TRUE
SDL#K SET SDLTR-CONS-MSG-ON TO TRUE
SDL#K SET SDLTR-LOG-MODE-OFF TO TRUE
SDL#K SET SDLTR-DUPLICAT-ON TO TRUE
SDL#K SET SDLTR-TIMING-OFF TO TRUE
SDL#K SET SDLTR-TMSTP-LOC TO TRUE
SDL#K SET SDLTR-TRACE-ON TO TRUE
SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL.
SDL#***--***
 MOVE 'Hello, COBOL!' TO CHARACTER-DATA
SDL#***--***
SDL#I MOVE 'V1' TO SDLTR-TYPE
SDL#F MOVE 'CHARACTER-DATA' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE CHARACTER-DATA
SDL#H BY CONTENT LENGTH OF CHARACTER-DATA
SDL#E END-CALL
SDL#***--***
 MOVE 'This is character data that extends over more than one
 - 'line and shows how data is displayed on several lines'
 TO CHARACTER-DATA-LONG
SDL#***--***
SDL#I MOVE 'V2' TO SDLTR-TYPE
SDL#F MOVE 'CHARACTER-DATA-LONG' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE CHARACTER-DATA-LONG
SDL#H BY CONTENT LENGTH OF CHARACTER-DATA-LONG
SDL#E END-CALL
SDL#***--***
 MOVE 123 TO NUMERIC-DATA-UNSIGNED
SDL#***--***
SDL#I MOVE 'V3' TO SDLTR-TYPE
SDL#F MOVE 'NUMERIC-DATA-UNSIGNED' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE NUMERIC-DATA-UNSIGNED
SDL#H BY CONTENT LENGTH OF NUMERIC-DATA-UNSIGNED
SDL#E END-CALL
SDL#***--***
 MOVE 456 TO NUMERIC-DATA-SIGNED-POS
SDL#***--***
SDL#I MOVE 'V4' TO SDLTR-TYPE
SDL#F MOVE 'NUMERIC-DATA-SIGNED-POS' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE NUMERIC-DATA-SIGNED-POS
SDL#H BY CONTENT LENGTH OF NUMERIC-DATA-SIGNED-POS

SDLTRACE FOR COBOL

User Guide

 - 7 -

SDL#E END-CALL
SDL#***--***
 MOVE -789 TO NUMERIC-DATA-SIGNED-NEG
SDL#***--***
SDL#I MOVE 'V5' TO SDLTR-TYPE
SDL#F MOVE 'NUMERIC-DATA-SIGNED-NEG' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE NUMERIC-DATA-SIGNED-NEG
SDL#H BY CONTENT LENGTH OF NUMERIC-DATA-SIGNED-NEG
SDL#E END-CALL
SDL#***--***
 MOVE 123 TO DECIMAL-DATA-UNSIGNED
SDL#***--***
SDL#I MOVE 'V6' TO SDLTR-TYPE
SDL#F MOVE 'DECIMAL-DATA-UNSIGNED' TO SDLTR-TEXT
SDL#U SET SDLTR-VAR-TYPE-DEC TO TRUE
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE DECIMAL-DATA-UNSIGNED
SDL#H BY CONTENT LENGTH OF DECIMAL-DATA-UNSIGNED
SDL#E END-CALL
SDL#***--***
 MOVE 456 TO DECIMAL-DATA-SIGNED-POS
SDL#***--***
SDL#I MOVE 'V7' TO SDLTR-TYPE
SDL#F MOVE 'DECIMAL-DATA-SIGNED-POS' TO SDLTR-TEXT
SDL#U SET SDLTR-VAR-TYPE-DEC TO TRUE
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE DECIMAL-DATA-SIGNED-POS
SDL#H BY CONTENT LENGTH OF DECIMAL-DATA-SIGNED-POS
SDL#E END-CALL
SDL#***--***
 MOVE -789 TO DECIMAL-DATA-SIGNED-NEG
SDL#***--***
SDL#I MOVE 'V8' TO SDLTR-TYPE
SDL#F MOVE 'DECIMAL-DATA-SIGNED-NEG' TO SDLTR-TEXT
SDL#U SET SDLTR-VAR-TYPE-DEC TO TRUE
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE DECIMAL-DATA-SIGNED-NEG
SDL#H BY CONTENT LENGTH OF DECIMAL-DATA-SIGNED-NEG
SDL#E END-CALL
SDL#***--***
 MOVE 123456789 TO BINARY-DATA
SDL#***--***
SDL#I MOVE 'V9' TO SDLTR-TYPE
SDL#F MOVE 'BINARY-DATA' TO SDLTR-TEXT
SDL#U SET SDLTR-VAR-TYPE-BIN TO TRUE
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE BINARY-DATA
SDL#H BY CONTENT LENGTH OF BINARY-DATA
SDL#E END-CALL
SDL#***--***
SDL#***--***
SDL#Z MOVE 'STOP ' TO SDLTR-TYPE
SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#***--***
 GOBACK.

 END PROGRAM SAMPLB01.

Each inserted statement is marked with the string “SDL#” in the first four positions. Therefore all inserted
statements may easily be excluded from view in the ISPF edit with a simple “x all SDL#” command.
Looking at the included code we see the communication area named SDLTR-PARM which is used to
pass the necessary information to SDLTRACE; its structure should not be changed by the application,

SDLTRACE FOR COBOL

User Guide

 - 8 -

except of course to set the required parameters, which may change form call to call. The initialization call
is executed before any other application program statement and causes the allocation of the trace dataset
“user-id.SDLAPPL1.COB01JOB.XX.Dyymmdd.ThhmmA”. The name is built using the values of the
parameters “DSN qualifier” and “Application-ID”, followed by the job name under which the program is
being run. The “XX” is a two-character qualifier computed using as a base the actual JOB-ID. The DSN is
then completed with the current date and time. In addition the environment is set up for all subsequent
trace calls. All the information needed for execution in any sub-system, TSO, Batch, CICS, IMS, DB/2,
WLM, etc. is provided so that there is no need to change the JCL or any other runtime parameter.

The code contains all statements necessary to produce the trace data when the module is being
executed. Since JCL for compilation and linking has been provided as well, the member may be
submitted directly from the ISPF editor window. After execution the name of the dynamically allocated
trace dataset will be listed in the job output:

+SDLTRACE – user-id.SDLAPPL1.COB01JOB.QW.D110314.T0823A

and its contents will be the following:

START TRACE: SAMPLB01 SDLTRACE VER 4.5 09/13/05 03/14/2015 08:23
V1 CHARACTER-DATA Hello, COBOL!
V2 CHARACTER-DATA-LONG 0 This is character data that extends over
V2 40 * more than one line and shows how data i
V2 80 * s displayed on several lines
V2 120 *
 = 3 IDENTICAL LINES -
V3 NUMERIC-DATA-UNSIGNED 00000123
V4 NUMERIC-DATA-SIGNED-POS +00000456
V5 NUMERIC-DATA-SIGNED-NEG -00000789
V6 DECIMAL-DATA-UNSIGNED P 0000123
V7 DECIMAL-DATA-SIGNED-POS P+0000456
V8 DECIMAL-DATA-SIGNED-NEG P-0000789
V9 BINARY-DATA B 123456789
STOP TRACE: SAMPLB01 SDLTRACE VER 4.5 09/13/05 03/14/2015 08:23

The first and the last line show the name of the program being traced, the SDLTRACE version number and
date and time of execution. The other lines trace the path of execution through the program. Each trace
line is marked with an identification number consisting of one letter followed by up to four digits.
Variables are denoted by “V”, and the variable name is displayed following the identification number. The
actual data value is then displayed starting in column 40 and formatted according to the variable’s type.

Character data is listed without conversion; if it does not fit on one line it will be continued on succeeding
lines and marked with an asterisk “*”; in addition the relative offset to the beginning of the continuation
line is indicated. If data in adjacent lines is identical it will be displayed only once and the number of
identical lines counted. (This check for duplicate lines may be disabled by setting the ATRACE panel
switch Count duplicates to “N”, which results in SET SDLTR-DUPLICAT-OFF TO TRUE during
processing of the COBOL source program).

Numeric data is displayed as shown in the example, unsigned data without a sign and signed data with a
“+” or “-“ in front. The number of positions indicates the amount specified in the source code definition of
the variable. Packed decimal data (COMP-3) is also marked with a “P”, with the length always an odd
number (though the definition in the source code may have specified an even number). Binary data
(COMP) is marked with a “B” and always uses a field of 12 bytes, adjusted to the right, with a “-“ sign
appended if the number is negative.

SDLTRACE FOR COBOL

User Guide

 - 9 -

Each trace line is actually 133 bytes long, out of which only the first 80 are shown in the example above
because all 133 bytes will not fit on one line in this document. The remaining 53 bytes of each line are
listed here separately:

 SAMPLB01 1 1 T 2015-03-14 08:23:36.184826
 SAMPLB01 1 2 T 2015-03-14 08:23:36.224077
 SAMPLB01 1 3 T 2015-03-14 08:23:36.224088
 SAMPLB01 1 4 T 2015-03-14 08:23:36.224088
 SAMPLB01 1 5 T 2015-03-14 08:23:36.224088
 SAMPLB01 1 6 T 2015-03-14 08:23:36.224088
 SAMPLB01 3 9 T 2015-03-14 08:23:36.224088
 SAMPLB01 1 10 T 2015-03-14 08:23:36.224095
 SAMPLB01 1 11 T 2015-03-14 08:23:36.224100
 SAMPLB01 1 12 T 2015-03-14 08:23:36.224104
 SAMPLB01 1 13 T 2015-03-14 08:23:36.224108
 SAMPLB01 1 14 T 2015-03-14 08:23:36.224113
 SAMPLB01 1 15 T 2015-03-14 08:23:36.224117
 SAMPLB01 1 16 T 2015-03-14 08:23:36.224121
 SAMPLB01 1 17 T 2015-03-14 08:23:36.224125

The name of the program that generates the trace line is listed first. It is followed by the duplication
counter indicating the number of occurrences of the data line, which in most cases is 1. Lines with
identical data in column 40 to 80 are counted and displayed with a message together with the count. In
this case the lines 7, 8 and 9 are identical to line 6 and therefore the duplication count is 3. As mentioned
before, the check for duplicates can easily be disabled by setting Count duplicates to “N” in the
ATRACE panel.

The next number is the sequence counter of the logical record in the trace dataset, beginning with 1 when
the dataset is created initially. This sequence counter will be carried over to succeeding datasets that are
automatically allocated when a dataset is full or when for other reasons the current one must be closed.
There is a limit for sequence numbers: 2.147.483.647 is the highest possible value, after which counting
restarts with 1 again.

The ’T’ indicates that this is a TRACE record (the other possible value being ’L’, denoting a LOG record).
The timestamp is formatted by the trace engine which reads the system clock immediately before storing
the generated trace record into the trace buffer. Thus for every trace record the time of its creation is
stored, which can be used to compute elapsed times between arbitrary events. In one of the following
examples this will be explained in more detail.

Please note that the timestamps for the lines with sequence numbers 3 to 9 are identical because they all
belong to just one logical record.

SDLTRACE FOR COBOL

User Guide

 - 10 -

Chapter 2. Tracing PERFORMs, labels, etc.

The second example is in member SAMPLB02 and contains two paragraphs which are performed in the
main program part:

 ID DIVISION.

 PROGRAM-ID SAMPLB02.

 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 c-data PIC X(40) VALUE SPACE.

 PROCEDURE DIVISION.

 MAIN.
 PERFORM Paragraph-1
 DISPLAY c-data
 PERFORM Paragraph-2
 DISPLAY c-data
 GOBACK.
 Paragraph-1.
 MOVE 'Program started' TO c-data
 EXIT.
 Paragraph-2.
 MOVE 'Program ended' TO c-data
 EXIT.
 END PROGRAM SAMPLB02.

When this program is executed it will produce the following output:

Program started
Program ended

To set up this module for execution with tracing we again go to “user-id”.SDLTRACE.DEMO.CNTL and
type “ex” in front of ATRACE. The panel being displayed will be the one from the last invocation:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 1 of 1
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id.SDLTRACE.DEMO.COBOL_________________
Input member SAMPLB01
Output member SAMPLBX1 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id_ Trace/Log mode T (T/L)
Application-ID SDLAPPL1 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 5___ (0-1440) Trace variables Y (Y/N)

Count duplicates Y (Y/N) Include string #1 ______________________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE N (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________

SDLTRACE FOR COBOL

User Guide

 - 11 -

Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

On this panel we change SAMPLB01 to SAMPLB02 and SAMPLBX1 to SAMPLBX2 and then select “x”
in the top right entry and hit “Enter” to have SDLPREP executed in TSO. The result will be the display:

SDLTRACE - Version 4.5.23 14 Mar 2015 09:30:58 user-id
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=TRACE
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: SAMPLB02
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: SAMPLBX2
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 49
SDLTRACE - MOVE TO variables: 2
SDLTRACE - Number of lines inserted: 128
SDLTRACE - Number of lines with trace: 177
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

Again the interface to SDLTRACE is inserted into the COBOL source as well as code to trace the two
MOVE statements. The resultant module SAMPLBX02 will be displayed in the ISPF editor next, with the
“MAIN.” part of the procedure division changed to:

 .
 .
 MAIN.
 PERFORM Paragraph-1
 DISPLAY c-data
 PERFORM Paragraph-2
 DISPLAY c-data
SDL#***--***
SDL#Z MOVE 'STOP ' TO SDLTR-TYPE
SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#***--***
 GOBACK.
 Paragraph-1.
 MOVE 'Program started' TO c-data
SDL#***--***
SDL#I MOVE 'V1' TO SDLTR-TYPE
SDL#F MOVE 'c-data' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE c-data
SDL#H BY CONTENT LENGTH OF c-data
SDL#E END-CALL
SDL#***--***
 EXIT.
 Paragraph-2.
 MOVE 'Program ended' TO c-data
SDL#***--***
SDL#I MOVE 'V2' TO SDLTR-TYPE
SDL#F MOVE 'c-data' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE c-data
SDL#H BY CONTENT LENGTH OF c-data

SDLTRACE FOR COBOL

User Guide

 - 12 -

SDL#E END-CALL
SDL#***--***
 EXIT.
 END PROGRAM SAMPLB02.

When the above program is run a trace dataset with the following contents will be generated:

START TRACE: SAMPLB02 SDLTRACE VER 4.5 09/13/05 03/14/2015 09:34
V1 c-data Program started
V2 c-data Program ended
STOP TRACE: SAMPLB02 SDLTRACE VER 4.5 09/13/05 03/14/2015 09:34

The two MOVE statements are executed and the trace shows V1 and V2 with the variable name c-data
and the respective values. In order to see the complete flow through the program as it is run we now
enlarge the scope of the trace by changing the relevant entries on the ATRACE panel:

DSN qualifier user-id_ Trace/Log mode T (T/L)
Application-ID SDLAPPL1 Trace PERFORM Y (Y/N)
JOB-ID check *_______ Trace PERFORM end Y (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels Y (Y/N)
DSN time (minutes) 5___ (0-1440) Trace variables Y (Y/N)

The three entries Trace PERFORM , Trace PERFORM end and Trace labels are changed to Y,
and the messages after execution of the panel (just enter “x” in the panel command field) will be:

SDLTRACE - Version 4.5.23 14 Mar 2015 09:36:56 user-id
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=TRACE
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> PERFORM statements
SDLTRACE - -> Return from PERFORM block
SDLTRACE - -> Labels being encountered
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: SAMPLB02
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: SAMPLBX2
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 49
SDLTRACE - PERFORMs to trace: 2
SDLTRACE - Labels to trace: 3
SDLTRACE - MOVE TO variables: 2
SDLTRACE - Number of lines inserted: 163
SDLTRACE - Number of lines with trace: 212
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

There are two PERFORM statements to trace, three Labels (MAIN, Paragraph1 and Paragraph2)
and of course the two MOVE statements. The changed program now reads as follows, starting at
paragraph MAIN:

 MAIN.
SDL#***--***

SDLTRACE FOR COBOL

User Guide

 - 13 -

SDL#L MOVE 'L1' TO SDLTR-TYPE
SDL#T MOVE 'MAIN.' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL.
SDL#***--***
SDL#***--***
SDL#B MOVE 'P1' TO SDLTR-TYPE
SDL#T MOVE 'Paragraph-1' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#***--***
 PERFORM Paragraph-1
SDL#***--***
SDL#X MOVE 'X1' TO SDLTR-TYPE
SDL#T MOVE 'Paragraph-1' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#***--***
 DISPLAY c-data
SDL#***--***
SDL#B MOVE 'P2' TO SDLTR-TYPE
SDL#T MOVE 'Paragraph-2' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#***--***
 PERFORM Paragraph-2
SDL#***--***
SDL#X MOVE 'X2' TO SDLTR-TYPE
SDL#T MOVE 'Paragraph-2' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#***--***
 DISPLAY c-data
SDL#***--***
SDL#Z MOVE 'STOP ' TO SDLTR-TYPE
SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#***--***
 GOBACK.
 Paragraph-1.
SDL#***--***
SDL#L MOVE 'L2' TO SDLTR-TYPE
SDL#T MOVE 'Paragraph-1.' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL.
SDL#***--***
 MOVE 'Program started' TO c-data
SDL#***--***
SDL#I MOVE 'V1' TO SDLTR-TYPE
SDL#F MOVE 'c-data' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE c-data
SDL#H BY CONTENT LENGTH OF c-data
SDL#E END-CALL
SDL#***--***
 EXIT.
 Paragraph-2.
SDL#***--***
SDL#L MOVE 'L3' TO SDLTR-TYPE
SDL#T MOVE 'Paragraph-2.' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL.
SDL#***--***
 MOVE 'Program ended' TO c-data
SDL#***--***
SDL#I MOVE 'V2' TO SDLTR-TYPE
SDL#F MOVE 'c-data' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE c-data
SDL#H BY CONTENT LENGTH OF c-data
SDL#E END-CALL
SDL#***--***

SDLTRACE FOR COBOL

User Guide

 - 14 -

 EXIT.
 END PROGRAM SAMPLB02.

Execution of this program will result in a dataset with the following contents:

START TRACE: SAMPLB02 SDLTRACE VER 4.5 09/13/05 03/14/2015 09:42
L1 ------- MAIN.
P1 PERFORM Paragraph-1
L2 ------- Paragraph-1.
V1 c-data Program started
X1 --END-- Paragraph-1
P2 PERFORM Paragraph-2
L3 ------- Paragraph-2.
V2 c-data Program ended
X2 --END-- Paragraph-2
STOP TRACE: SAMPLB02 SDLTRACE VER 4.5 09/13/05 03/14/2015 09:42

The first and the last line are generated by SDLTRACE and report the program name SAMPLB02, which
was executed on 03/14/2015 at 09:42. Line 2 starts with the indicator “L”, indicating a label; since it is
the first one its sequence number is “1”, hence “L1”. This is followed by the label string “-------“ and the
actual name “MAIN.”. On the next line we have identifier “P1” denoting the first PERFORM statement,
naming Paragraph-1 as target. This is then shown on the following line as “L2“, the second label in the
program. There is just one move statement in Paragraph-1 assigning the data “Program started “ to
the variable “c-data” identified by “V1“. The program now has reached the end of Paragraph-1 and
returns to “MAIN“, which is marked with “X1“ to signal the exit, with the string “--END--“ followed by the
name of the perform that is ending, namely “Paragraph-1“.

Similarly Paragraph-2 is traced with the second move statement identified by “V2“, even though the name
of the variable “c-data“ is the same as in Paragraph-1. Each occurrence of a traced item is identified by
a unique 1 to 4-digit number, preceded by a letter denoting the type (L, P, V, X, etc.). It is therefore easy
to find the place in a program where a certain variable is assigned even if it occurs many times in the
program. With a simple “f V…” in the ISPF editor the location can be found immediately.

With SDLTRACE it is easy to verify that a program does exactly what is intended. As an example we now
change the line:

 Paragraph-1.

in program SAMPLB02 in library “user-id”.SDLTRACE.DEMO.COBOL to read:

 Paragraph-1 SECTION.

In order to do that please go to library “user-id”.SDLTRACE.DEMO.COBOL and edit SAMPLB02 with the
SPF editor. The Procedure Division of the program SAMPLB02 now is:

 MAIN.
 PERFORM Paragraph-1
 DISPLAY c-data
 PERFORM Paragraph-2
 DISPLAY c-data
 GOBACK.
 Paragraph-1 SECTION.
 MOVE 'Program started' TO c-data
 EXIT.
 Paragraph-2.
 MOVE 'Program ended' TO c-data
 EXIT.
 END PROGRAM SAMPLB02.

After the change the member should be saved by hitting PF3.

SDLTRACE FOR COBOL

User Guide

 - 15 -

Execution of this program will produce the following output:

Program ended
Program ended

Why that? To a knowledgeable COBOL programmer this is exactly what should be expected; to others
the result is somewhat puzzling. A simple trace, however, reveals what has happened. After executing
the panel ATRACE again and then compiling and running the program we will get the trace output:

START TRACE: SAMPLB02 SDLTRACE VER 4.5 09/13/05 03/14/2015 09:49
L1 ------- MAIN.
P1 PERFORM Paragraph-1
L2 ------- Paragraph-1 SECTION.
V1 c-data Program started
L3 ------- Paragraph-2.
V2 c-data Program ended
X1 --END-- Paragraph-1
P2 PERFORM Paragraph-2
L3 ------- Paragraph-2.
V2 c-data Program ended
X2 --END-- Paragraph-2
STOP TRACE: SAMPLB02 SDLTRACE VER 4.5 09/13/05 03/14/2015 09:49

According to the COBOL language specification this is exactly what the program should do: A section
ends when a new section starts or at the end of the program; the EXIT statement has no effect. Thus
the program “falls through” and executes Paragraph-2 twice, once as part of “SECTION” Paragraph-1 and
then as single paragraph within “SECTION” Paragraph-1. It is not what the programmer, presumably,
intended, but it nevertheless is correct and shows how important verification of program logic really is.

SDLTRACE FOR COBOL

User Guide

 - 16 -

Chapter 3. Tracing variables with indices

The next program we look at is SAMPLB03 in library “user-id“.SDLTRACE.DEMO.COBOL:

 ID DIVISION.

 PROGRAM-ID SAMPLB03.

 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 c-const PIC X(26) VALUE 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
 01 c-data.
 10 c-data-row OCCURS 3.
 20 c-data-item PIC X(05) OCCURS 3.
 01 I PIC 9(05) BINARY.
 01 J PIC 9(05) BINARY.
 PROCEDURE DIVISION.
 PERFORM VARYING I FROM 1 BY 1 UNTIL I > 3
 PERFORM VARYING J FROM 1 BY 1 UNTIL J > 3
 MOVE c-const(I:J) TO c-data-item(I J)
 END-PERFORM
 END-PERFORM
 GOBACK.
 END PROGRAM SAMPLB03.

The two-dimensional array c-data-item is initialized with substrings from the string c-const
containing the alphabet. The indices I and J are varied from 1 to 3 and are used to select the
substrings as well. To verify the operation of this program we again call up ATRACE out of library
“user-id”.SDLTRACE.DEMO.CNTL and specify SAMPLB03 as input and SAMPLBX3 as output member.
In addition the three parameters “Trace PERFORM”, “Trace PERFORM end” and “Trace labels” should
be reset to “N”. The panel should thus look as follows:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 3 of 3
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL__________________
Output dataset user-id.SDLTRACE.DEMO.COBOL__________________
Input member SAMPLB03
Output member SAMPLBX3 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id_ Trace/Log mode T (T/L)
Application-ID SDLAPPL1 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 5___ (0-1440) Trace variables Y (Y/N)

Count duplicates Y (Y/N) Include string #1 ______________________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE N (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

SDLTRACE FOR COBOL

User Guide

 - 17 -

Execution of this panel will create SAMPLBX3, which, when run, will produce the following trace dataset:

START TRACE: SAMPLB03 SDLTRACE VER 4.5 09/13/05 03/14/2015 09:55
V1 c-data-item(I J) A 1 1
V1 c-data-item(I J) AB 1 2
V1 c-data-item(I J) ABC 1 3
V1 c-data-item(I J) B 2 1
V1 c-data-item(I J) BC 2 2
V1 c-data-item(I J) BCD 2 3
V1 c-data-item(I J) C 3 1
V1 c-data-item(I J) CD 3 2
V1 c-data-item(I J) CDE 3 3
STOP TRACE: SAMPLB03 SDLTRACE VER 4.5 09/13/05 03/14/2015 09:55

The trace shows that the program produces the expected result: The substrings with length 1, 2 and 3 are
assigned to the proper array elements, indicated by the respective indices whose values are listed
together with the value of the array variable (up to two indices are traced automatically). If there are more
than two, then only the first two are traced and the remaining indices are simply ignored (for tracing
purposes).

SDLTRACE FOR COBOL

User Guide

 - 18 -

Chapter 4. Measuring execution times

Each trace record contains in its rightmost part the actual timestamp with microsecond resolution so that
the elapsed time between any two events can easily be computed. However, instead of doing that
manually the trace program can be used to compute these differences. In addition to the elapsed time,
SDLTRACE also determines the amount of CPU time used during each interval. Both values are
recorded in the trace dataset following each trace record. The module SAMPLB04 shows how this feature
can be used to easily get execution times:

 ID DIVISION.

 PROGRAM-ID SAMPLB04.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 WAIT PIC X(8) VALUE 'SDLWAIT'.
 01 WAIT-PARM.
 05 PIC S9(4) COMP VALUE 8.
 05 WAIT-TIME.
 10 WAIT-TIME-HH PIC 9(2) VALUE ZERO.
 10 WAIT-TIME-MM PIC 9(2) VALUE ZERO.
 10 WAIT-TIME-SS PIC 9(2) VALUE ZERO.
 10 WAIT-TIME-TH PIC 9(2) VALUE ZERO.
 01 I PIC S9(3) COMP-3.

 PROCEDURE DIVISION.
 PERFORM VARYING I FROM 1 BY 1 UNTIL I > 3
 MOVE I TO WAIT-TIME-SS
 CALL WAIT USING WAIT-PARM END-CALL
 END-PERFORM
 MOVE ZERO TO RETURN-CODE
 GOBACK.

 END PROGRAM SAMPLB04.

In SAMPLB04 the service module SDLWAIT is called 3 times, with the parameter set to 1, 2 and then 3
seconds. (The purpose of SDLWAIT is to introduce delays into the execution of programs, with the
amount of time to wait specified in the parameter block). Again the trace code is inserted by calling up the
panel ATRACE:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 4 of 4
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL______________________
Output dataset user-id.SDLTRACE.DEMO.COBOL______________________
Input member SAMPLB04
Output member SAMPLBX4 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id_ Trace/Log mode T (T/L)
Application-ID SDLAPPL1 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 5___ (0-1440) Trace variables Y (Y/N)

Count duplicates Y (Y/N) Include string #1 ______________________

SDLTRACE FOR COBOL

User Guide

 - 19 -

Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE N (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

After executing this panel the Procedure Division of SAMPLB04 (now in member SAMPLBX4) will be:

 PROCEDURE DIVISION.
SDL#***--***
SDL#A START-TRACE-INITIALIZATION.
SDL#S MOVE 'START' TO SDLTR-TYPE
SDL#N MOVE 'SAMPLB04' TO SDLTR-PGMNAME
SDL#K MOVE 'user-id ' TO SDLTR-DSN-HILEVEL
SDL#K MOVE 'SDLAPPL1' TO SDLTR-APPL-ID
SDL#K MOVE '* ' TO SDLTR-JOBNAME
SDL#K MOVE 0 TO SDLTR-THRESHOLD
SDL#K MOVE 100 TO SDLTR-PRI-TRKS
SDL#K MOVE 100 TO SDLTR-SEC-TRKS
SDL#K MOVE 5 TO SDLTR-NEWTIM
SDL#K SET SDLTR-WRITE-IMM-OFF TO TRUE
SDL#K SET SDLTR-TRACECTL-OFF TO TRUE
SDL#K SET SDLTR-CONS-MSG-ON TO TRUE
SDL#K SET SDLTR-LOG-MODE-OFF TO TRUE
SDL#K SET SDLTR-DUPLICAT-ON TO TRUE
SDL#K SET SDLTR-TIMING-OFF TO TRUE
SDL#K SET SDLTR-TMSTP-LOC TO TRUE
SDL#K SET SDLTR-TRACE-ON TO TRUE
SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL.
SDL#***--***

 PERFORM VARYING I FROM 1 BY 1 UNTIL I > 3
 MOVE I TO WAIT-TIME-SS
SDL#***--***
SDL#I MOVE 'V1' TO SDLTR-TYPE
SDL#F MOVE 'WAIT-TIME-SS' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE WAIT-TIME-SS
SDL#H BY CONTENT LENGTH OF WAIT-TIME-SS
SDL#E END-CALL
SDL#***--***
SDL#***--***
SDL#I MOVE 'V2' TO SDLTR-TYPE
SDL#F MOVE '------> CALL WAIT' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#E END-CALL
SDL#***--***
 CALL WAIT USING WAIT-PARM END-CALL
 END-PERFORM
 MOVE ZERO TO RETURN-CODE
SDL#***--***
SDL#I MOVE 'V3' TO SDLTR-TYPE
SDL#F MOVE 'RETURN-CODE' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE RETURN-CODE
SDL#H BY CONTENT LENGTH OF RETURN-CODE
SDL#E END-CALL
SDL#***--***
SDL#***--***
SDL#Z MOVE 'STOP ' TO SDLTR-TYPE

SDLTRACE FOR COBOL

User Guide

 - 20 -

SDL#C CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#***--***
 GOBACK.

 END PROGRAM SAMPLB04.

Running this program will produce the following trace dataset:

START TRACE: SAMPLB04 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:02
V1 WAIT-TIME-SS 01
V2 ------> CALL WAIT
V1 WAIT-TIME-SS 02
V2 ------> CALL WAIT
V1 WAIT-TIME-SS 03
V2 ------> CALL WAIT
V3 RETURN-CODE X'0000'
STOP TRACE: SAMPLB04 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:02

with the rightmost 53 columns:

 SAMPLB04 1 1 T 2015-03-14 10:02:21.101073
 SAMPLB04 1 2 T 2015-03-14 10:02:21.138513
 SAMPLB04 1 3 T 2015-03-14 10:02:21.138539
 SAMPLB04 1 4 T 2015-03-14 10:02:22.140225
 SAMPLB04 1 5 T 2015-03-14 10:02:22.140232
 SAMPLB04 1 6 T 2015-03-14 10:02:24.140312
 SAMPLB04 1 7 T 2015-03-14 10:02:24.140322
 SAMPLB04 1 8 T 2015-03-14 10:02:27.140368
 SAMPLB04 1 9 T 2015-03-14 10:02:27.140378

The times for the first MOVE and the CALL statements are in line 3, 4, 6 and 8 as follows: 10:02:21,
10:02:22, 10:02:24 and 10:02:27. This shows that the delays are executed properly and
amount to 1, 2 and 3 seconds as requested.

In the lower left part of the panel ATRACE there are the lines:

Enable timing N (Y/N)
Timing threshold ____0 (0-32767 ms)

These two entries control the timing option of SDLTRACE. By setting Enable timing to Y and
Timing threshold to 0 the elapsed time and the CPU time for each trace record will be computed.
Please set the parameter Enable timing to Y and execute the panel again. There will be a slight
change in the generated module SAMPLBX4 in the trace initialization paragraph where instead of

SDL#K SET SDLTR-TIMING-OFF TO TRUE

we now have:

SDL#K SET SDLTR-TIMING-ON TO TRUE

When run with this change the program will generate the following trace dataset:

START TRACE: SAMPLB04 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:14
V1 WAIT-TIME-SS 01
V2 Measured elapsed clock time: 10 microseconds
V2 z/OS recorded TASK CPU time: 0 microseconds
V2 ------> CALL WAIT
V1 Clock time: 1.001708 seconds
V1 CPU time: 130 microseconds
V1 WAIT-TIME-SS 02
V2 Clock time: 11 microseconds

SDLTRACE FOR COBOL

User Guide

 - 21 -

V2 CPU time: 0 microseconds
V2 ------> CALL WAIT
V1 Clock time: 2.000077 seconds
V1 CPU time: 33 microseconds
V1 WAIT-TIME-SS 03
V2 Clock time: 12 microseconds
V2 CPU time: 0 microseconds
V2 ------> CALL WAIT
V3 Clock time: 3.000041 seconds
V3 CPU time: 36 microseconds
V3 RETURN-CODE X'0000'
STOP TRACE: SAMPLB04 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:14

There are two additional lines indicating different times: Measured elapsed clock time, which is
the difference between the relevant timestamps, and: z/OS recorded TASK CPU time, which is the
corresponding CPU time as attributed to the current task by the operating system. Since the CPU time is
computed only when a task change takes place there are many instances where the displayed CPU time
is zero because the current task is still active and the corresponding entry in the TCB has not yet been
updated by the system. Therefore the individual CPU time values are not very useful per se, except as an
indicator that the task has not been interrupted, and as a result the elapsed time also represents CPU
usage if the corresponding CPU time value indicates 0.

The amount of timing information may be limited by specifying a certain threshold so that only elapsed
times above that value are recorded. Please call up ATRACE again for member SAMPLB04 and change
the following entries to read:

Enable timing Y (Y/N)
Timing threshold _3000 (0-32767 ms)

This will limit the timing output to values above 3 seconds (3000 ms). The trace file of SAMPLBX4 will
show the following:

START TRACE: SAMPLB04 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:17
V1 WAIT-TIME-SS 01
V2 ------> CALL WAIT
V1 WAIT-TIME-SS 02
V2 ------> CALL WAIT
V1 WAIT-TIME-SS 03
V2 ------> CALL WAIT
V3 Measured elapsed clock time: 3.000052 seconds
V3 z/OS recorded TASK CPU time: 33 microseconds
V3 RETURN-CODE X'0000'
STOP TRACE: SAMPLB04 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:17

As requested, only elapsed times exceeding 3 seconds are recorded. In this case it is the call to the
subroutine WAIT with parameter 03 that satisfies the condition.

The threshold is specified in milliseconds. The minimum positive value that may be specified is 1ms.
Since most statements in a program execute in less than that only calls to subroutines or accesses to
external databases will be recorded if 1ms is specified.

For a detailed time consumption analysis of a program or of a complete application consisting of many
individual modules, the logging mode of SDLTRACE provides all necessary tools to determine where
time is spent and how much is used by each component. It is therefore recommended to use the logging
mode instead of tracing when analyzing the time consumption distribution of an application.

SDLTRACE FOR COBOL

User Guide

 - 22 -

Chapter 5. Controlling the allocation of trace datasets

There are five parameters to control the allocation of trace datasets: DSN qualifier, Application-ID,
JOB-ID check, DSN alloc space and DSN alloc time. These parameters are specified on the ATRACE
panel in the section:

DSN qualifier user-id_ Trace/Log mode T (T/L)
Application-ID SDLAPPL1 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 0___ (0-1440) Trace variables Y (Y/N)

1. DSN qualifier

The DSN qualifier specifies the high level of the trace dataset that is automatically allocated when a
trace starts. It may be any name which is a valid DSN and for which the job has the authorization (in
RACF or similar systems) for allocation. Within all sample jobs we use the current user’s ID which of
course does have this authorization when the jobs are submitted by TSO. If the program containing trace
code is to be executed in another environment, for example in CICS, IMS, WLM, etc., then the high level
should be one that is authorized for “Write access” in those systems.

The DSN qualifier is not limited to just one level; it could also be XYZ.TEST, for example (if allocation
authority for XYZ exists). In case this authorization is missing it will not be possible to allocate the trace
dataset and an error message will be issued. No trace data will be produced in this case; the program,
however, will be executed as if no trace code were present.

2. Application-ID

The Application-ID determines the second level of the trace dataset name. It may be any valid DSN
and is used to distinguish between different programs or a set of programs belonging to a group. If in one
job several programs with trace code are executed and the application-ID is the same then the trace data
is recorded in a single dataset. Thus the call of a subroutine causes the trace data of that subroutine to be
listed immediately after the call in the same dataset. For an example please look at program SAMPLB05
in library “user-id“.SDLTRACE.DEMO.COBOL:

 ID DIVISION.

 PROGRAM-ID SAMPLB05.

 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 pgm pic x(8) value space.

 PROCEDURE DIVISION.
 move 'SAMPLB01' to pgm
 call pgm
 move 'SAMPLB02' to pgm
 call pgm
 move 'SAMPLB03' to pgm
 call pgm
 move 'SAMPLB04' to pgm
 call pgm
 goback.
 END PROGRAM SAMPLB05.

SDLTRACE FOR COBOL

User Guide

 - 23 -

The program calls the four samples we have used so far. The load modules which are called when this
program is run already have trace code inserted from executing the samples as described above.
Execution of SAMPLB05 will therefore result in a trace file that contains the trace data of all four
programs combined in one dataset. Just submit SAMPLB05 and look at the generated file. It will show the
following:

START TRACE: SAMPLB01 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:25
V1 CHARACTER-DATA Hello, COBOL!
V2 CHARACTER-DATA-LONG 0 This is character data that extends over
V2 40 * more than one line and shows how data i
V2 80 * s displayed on several lines
V2 120 *
 = 3 IDENTICAL LINES -
V3 NUMERIC-DATA-UNSIGNED 00000123
V4 NUMERIC-DATA-SIGNED-POS +00000456
V5 NUMERIC-DATA-SIGNED-NEG -00000789
V6 DECIMAL-DATA-UNSIGNED P 0000123
V7 DECIMAL-DATA-SIGNED-POS P+0000456
V8 DECIMAL-DATA-SIGNED-NEG P-0000789
V9 BINARY-DATA B 123456789
STOP TRACE: SAMPLB01 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:25
START TRACE: SAMPLB02 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:25
L1 ------- MAIN.
P1 PERFORM Paragraph-1
L2 ------- Paragraph-1 SECTION.
V1 c-data Program started
L3 ------- Paragraph-2.
V2 c-data Program ended
X1 --END-- Paragraph-1
P2 PERFORM Paragraph-2
L3 ------- Paragraph-2.
V2 c-data Program ended
X2 --END-- Paragraph-2
STOP TRACE: SAMPLB02 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:25
START TRACE: SAMPLB03 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:25
V1 c-data-item(I J) A 1 1
V1 c-data-item(I J) AB 1 2
V1 c-data-item(I J) ABC 1 3
V1 c-data-item(I J) B 2 1
V1 c-data-item(I J) BC 2 2
V1 c-data-item(I J) BCD 2 3
V1 c-data-item(I J) C 3 1
V1 c-data-item(I J) CD 3 2
V1 c-data-item(I J) CDE 3 3
STOP TRACE: SAMPLB03 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:25
START TRACE: SAMPLB04 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:25
V1 WAIT-TIME-SS 01
V2 ------> CALL WAIT
V1 WAIT-TIME-SS 02
V2 ------> CALL WAIT
V1 WAIT-TIME-SS 03
V2 ------> CALL WAIT
V3 Measured elapsed clock time: 3.000058 seconds
V3 z/OS recorded TASK CPU time: 29 microseconds
V3 RETURN-CODE X'0000'
STOP TRACE: SAMPLB04 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:25

In order to trace SAMPLB05, too, please call up ATRACE again and set up the program for tracing by
entering the following values in the panel:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR

SDLTRACE FOR COBOL

User Guide

 - 24 -

 Screen 5 of 5
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL______________________
Output dataset user-id.SDLTRACE.DEMO.COBOL______________________
Input member SAMPLB05
Output member SAMPLBX5 Insert/Remove/Edit I (I/R/E)
DSN qualifier user-id_ Trace/Log mode T (T/L)
Application-ID SDLAPPL1 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 5___ (0-1440) Trace variables Y (Y/N)

Count duplicates Y (Y/N) Include string #1 ______________________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE N (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

Executing the panel above will insert trace code into SAMPLB05, too, so that all five sample programs
now contain calls to SDLTRACE. When run SAMPLB05 will generate the following file:

START TRACE: SAMPLB05 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:34
V1 pgm SAMPLB01
V2 ------> CALL pgm
START TRACE: SAMPLB01 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:34
V1 CHARACTER-DATA Hello, COBOL!
V2 CHARACTER-DATA-LONG 0 This is character data that extends over
V2 40 * more than one line and shows how data i
V2 80 * s displayed on several lines
V2 120 *
 = 3 IDENTICAL LINES -
V3 NUMERIC-DATA-UNSIGNED 00000123
V4 NUMERIC-DATA-SIGNED-POS +00000456
V5 NUMERIC-DATA-SIGNED-NEG -00000789
V6 DECIMAL-DATA-UNSIGNED P 0000123
V7 DECIMAL-DATA-SIGNED-POS P+0000456
V8 DECIMAL-DATA-SIGNED-NEG P-0000789
V9 BINARY-DATA B 123456789
STOP TRACE: SAMPLB01 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:34
V3 pgm SAMPLB02
V4 ------> CALL pgm
START TRACE: SAMPLB02 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:34
L1 ------- MAIN.
P1 PERFORM Paragraph-1
L2 ------- Paragraph-1 SECTION.
V1 c-data Program started
L3 ------- Paragraph-2.
V2 c-data Program ended
X1 --END-- Paragraph-1
P2 PERFORM Paragraph-2
L3 ------- Paragraph-2.
V2 c-data Program ended
X2 --END-- Paragraph-2
STOP TRACE: SAMPLB02 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:34
V5 pgm SAMPLB03
V6 ------> CALL pgm
START TRACE: SAMPLB03 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:34

SDLTRACE FOR COBOL

User Guide

 - 25 -

V1 c-data-item(I J) A 1 1
V1 c-data-item(I J) AB 1 2
V1 c-data-item(I J) ABC 1 3
V1 c-data-item(I J) B 2 1
V1 c-data-item(I J) BC 2 2
V1 c-data-item(I J) BCD 2 3
V1 c-data-item(I J) C 3 1
V1 c-data-item(I J) CD 3 2
V1 c-data-item(I J) CDE 3 3
STOP TRACE: SAMPLB03 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:34
V7 pgm SAMPLB04
V8 ------> CALL pgm
START TRACE: SAMPLB04 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:34
V1 WAIT-TIME-SS 01
V2 ------> CALL WAIT
V1 WAIT-TIME-SS 02
V2 ------> CALL WAIT
V1 WAIT-TIME-SS 03
V2 ------> CALL WAIT
V3 Measured elapsed clock time: 3.000045 seconds
V3 z/OS recorded TASK CPU time: 29 microseconds
V3 RETURN-CODE X'0000'
STOP TRACE: SAMPLB04 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:34
STOP TRACE: SAMPLB05 SDLTRACE VER 4.5 09/13/05 03/14/2015 10:34

The rightmost part of the 133-byte trace lines for the data above is:

 SAMPLB05 1 1 T 2015-03-14 10:34:49.567871
 SAMPLB05 1 2 T 2015-03-14 10:34:49.606044
 SAMPLB05 1 3 T 2015-03-14 10:34:49.606054
 SAMPLB01 1 4 T 2015-03-14 10:34:49.607969
 SAMPLB01 1 5 T 2015-03-14 10:34:49.607980
 SAMPLB01 1 6 T 2015-03-14 10:34:49.607984
 SAMPLB01 1 7 T 2015-03-14 10:34:49.607984
 SAMPLB01 1 8 T 2015-03-14 10:34:49.607984
 SAMPLB01 1 9 T 2015-03-14 10:34:49.607984
 SAMPLB01 3 12 T 2015-03-14 10:34:49.607984
 SAMPLB01 1 13 T 2015-03-14 10:34:49.607992
 SAMPLB01 1 14 T 2015-03-14 10:34:49.607997
 SAMPLB01 1 15 T 2015-03-14 10:34:49.608001
 SAMPLB01 1 16 T 2015-03-14 10:34:49.608005
 SAMPLB01 1 17 T 2015-03-14 10:34:49.608009
 SAMPLB01 1 18 T 2015-03-14 10:34:49.608013
 SAMPLB01 1 19 T 2015-03-14 10:34:49.608018
 SAMPLB01 1 20 T 2015-03-14 10:34:49.608023
 SAMPLB05 1 21 T 2015-03-14 10:34:49.610570
 SAMPLB05 1 22 T 2015-03-14 10:34:49.618091
 SAMPLB02 1 23 T 2015-03-14 10:34:49.620024
 SAMPLB02 1 24 T 2015-03-14 10:34:49.620035
 SAMPLB02 1 25 T 2015-03-14 10:34:49.620039
 SAMPLB02 1 26 T 2015-03-14 10:34:49.620043
 SAMPLB02 1 27 T 2015-03-14 10:34:49.620047
 SAMPLB02 1 28 T 2015-03-14 10:34:49.620052
 SAMPLB02 1 29 T 2015-03-14 10:34:49.620056
 SAMPLB02 1 30 T 2015-03-14 10:34:49.620060
 SAMPLB02 1 31 T 2015-03-14 10:34:49.621313
 SAMPLB02 1 32 T 2015-03-14 10:34:49.621318
 SAMPLB02 1 33 T 2015-03-14 10:34:49.621322
 SAMPLB02 1 34 T 2015-03-14 10:34:49.621326
 SAMPLB02 1 35 T 2015-03-14 10:34:49.621331
 SAMPLB05 1 36 T 2015-03-14 10:34:49.623761
 SAMPLB05 1 37 T 2015-03-14 10:34:49.630553
 SAMPLB03 1 38 T 2015-03-14 10:34:49.632426
 SAMPLB03 1 39 T 2015-03-14 10:34:49.632437

SDLTRACE FOR COBOL

User Guide

 - 26 -

 SAMPLB03 1 40 T 2015-03-14 10:34:49.632442
 SAMPLB03 1 41 T 2015-03-14 10:34:49.632447
 SAMPLB03 1 42 T 2015-03-14 10:34:49.632451
 SAMPLB03 1 43 T 2015-03-14 10:34:49.632455
 SAMPLB03 1 44 T 2015-03-14 10:34:49.632460
 SAMPLB03 1 45 T 2015-03-14 10:34:49.632464
 SAMPLB03 1 46 T 2015-03-14 10:34:49.632469
 SAMPLB03 1 47 T 2015-03-14 10:34:49.632473
 SAMPLB03 1 48 T 2015-03-14 10:34:49.632478
 SAMPLB05 1 49 T 2015-03-14 10:34:49.634930
 SAMPLB05 1 50 T 2015-03-14 10:34:49.643433
 SAMPLB04 1 51 T 2015-03-14 10:34:49.645524
 SAMPLB04 1 52 T 2015-03-14 10:34:49.645535
 SAMPLB04 1 53 T 2015-03-14 10:34:49.645540
 SAMPLB04 1 54 T 2015-03-14 10:34:50.648872
 SAMPLB04 1 55 T 2015-03-14 10:34:50.648881
 SAMPLB04 1 56 T 2015-03-14 10:34:52.648974
 SAMPLB04 1 57 T 2015-03-14 10:34:52.648982
 SAMPLB04 1 58.T 2015-03-14 10:34:55.649027
 SAMPLB04 1 58.T 2015-03-14 10:34:55.649027
 SAMPLB04 1 58 T 2015-03-14 10:34:55.649027
 SAMPLB04 1 59 T 2015-03-14 10:34:55.649039
 SAMPLB05 1 60 T 2015-03-14 10:34:55.651847

Trace lines from SAMPLB05 are highlighted to distinguish them from the output of the called programs.
They show the individual calls and immediately following a trace of the execution of the called module.
Every program carries its own trace parameters and options, that is, each trace definition for a module
with ATRACE is local to that module. This can be seen above where in SAMPLB02 tracing of paragraphs
is enabled, and only SAMPLB04 includes timing information. A called program containing trace code may
in turn call another program with trace code; there is no limit to the number of nested calls.

If an application-ID is not specified in the ATRACE panel then the name of the program is taken and the
trace dataset name is generated accordingly. By specifying application-IDs depending on functional
differences individual trace datasets can easily be generated for groups of programs or individual
modules.

3. JOB-ID check

The parameter JOB-ID check is used to limit tracing to certain jobs or monitors. An asterisk ‘*’ means
that a trace should be generated irrespective of the job or monitor name under which it is executed. If a
name is specified then a trace is produced only if the actual job or monitor is equal to that name. If the
first part of a name with an asterisk appended (as in ‘ABC*’) is specified then a trace is generated only for
jobs or monitors whose names start with that string. For all other jobs no trace is produced and the
application runs as if no trace code existed, except that the return-code is set to 4. (To preserve an
application’s return-code just set the option Save RETURN-CODE to ‘Y ’. This should generally be set if
the return code from SDLTRACE is not checked by the application. Since the invocation of SDLTRACE is
an external call there may be side-effects in applications that rely on passing of the COBOL RETURN-
CODE (Register 15). Such effects are avoided by setting Save RETURN-CODE to ‘Y ’, which is
therefore the recommended setting).

Instead of a single jobname it is also possible to provide a list of names for which tracing is to be enabled.
This list is specified in the Assembler module SDLJOBLG in library “user-id”.SDLTRACE.DEMO.ASM.
For information regarding its use, please see the comments in that module. To enable the use of the list
the program SDLJOBLG must be linked into SDLTRACE and the option JOB-ID check must be set to
the string “JOB-LIST“ in the ATRACE panel.

SDLTRACE FOR COBOL

User Guide

 - 27 -

4. DSN alloc (tracks)

The space parameter DSN alloc (tracks) specifies the number of tracks between 1 and 9999 to
be allocated when a trace dataset is required. The amount of tracks depends on the type of application.
Independent of the allocation size a second dataset will be allocated when the first dataset has reached
the number of tracks specified. This second dataset has the same number of tracks and the same name
as the first one, except that the last letter is ‘B’ instead of ‘A’. Trace recording continues on dataset ‘B’
until that too has reached its limit, at which point a third dataset is allocated with the same dataset name
and the last letter ‘C’. When the limit is reached on ‘C’ the trace continues recording again on ‘B’, where
the previously recorded trace data is overwritten, then ‘C’ again, overwriting the previous data too, and so
on, alternating between ‘B’ and ‘C’ indefinitively. Thus there is trace information from the start of the
program in dataset ‘A’, and the last statements executed can be found either in ‘B’ or in ‘C’.

As an example the program SAMPLB06, which is simply the first sample program executed several times
in a loop, can be set up for tracing with the following parameters:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 6 of 6
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL______________________
Output dataset user-id.SDLTRACE.DEMO.COBOL______________________
Input member SAMPLB06
Output member SAMPLBX6 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id_ Trace/Log mode T (T/L)
Application-ID SDLAPPL1 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 1___ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 0___ (0-1440) Trace variables Y (Y/N)

Count duplicates Y (Y/N) Include string #1 ______________________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

The number of tracks to be allocated (parameter DSN alloc (tracks)) has been set to 1, so as to
force the allocation of a second dataset after relatively few trace records have been written. With the loop
counter set to 100, a third dataset will be allocated too, so that in the job output we will have:

+SDLTRACE - user-id.SDLAPPL1.COB06JOB.FP.D110315.T0930A
+SDLTRACE - user-id.SDLAPPL1.COB06JOB.FP.D110315.T0930B
+SDLTRACE - user-id.SDLAPPL1.COB06JOB.FP.D110315.T0930C

As already mentioned, trace data will be written alternatively on datasets ‘B’ and ‘C’ until the program
terminates or until the time parameter, described next, forces the allocation of a new dataset.

SDLTRACE FOR COBOL

User Guide

 - 28 -

5. DSN time (minutes)

The parameter DSN time (minutes) specifies the time interval between 1 and 1440 minutes during
which a trace dataset should be active. The value must be divisible into 1440 without remainder so that
there is a whole number of periods during one day (1440 minutes). Whenever an interval is complete the
currently active dataset is closed and tracing continues with recording on a new dataset with the last letter
‘A’, and then ‘B’ and ‘C’. A value of zero indicates that no new dataset is to be allocated during an entire
day and corresponds to a specification of 1440. The recommended value for DSN time is 60 so that
there is at least one new dataset every hour.

Irrespective of the setting for DSN time (minutes) a new dataset will always be allocated at midnight,
since then the day changes and therefore the date part of the DSN must be changed, too. The reason for
this is the rule that all trace data from a particular day is only recorded in datasets whose names indicate
exactly that day.

The process of creating new datasets periodically and switching to a new name at midnight can go on
indefinitively, and especially in long running jobs or online monitors which run for weeks or months
without interruption, this feature is used extensively by the logging function of SDLTRACE.

There are many other options available for tracing which are described in detail in the reference manual.
The information provided so far, however, should be enough to begin using SDLTRACE with some of
your own programs. You might be surprised to see what your code really does, and if it is exactly what
you intended it to do (and the Compiler faithfully translated that into executable instructions), then you can
be sure that the programs are not just accidentally delivering the expected results.

SDLTRACE FOR COBOL

User Guide

 - 29 -

Introduction to Logging Facility for COBOL

The logging facility of SDLTRACE is a special subset of the trace system and is used to record events in
real-time without any measurable impact on performance of the application. Just as the trace facility, the
logging mode runs in any execution environment (Batch, CICS, IMS, DB2, WLM, TSO, etc.) using a
simple CALL interface. On current (2011) mainframe machines it takes about 15 microseconds to record
a single event, so that for a million log records only 15 CPU seconds are needed. The collection of the
data on the various images in a multi-SYSPLEX environment and the consolidation and management of
the log data is fully automated with the use of SDLMERGE, a separate program that can be set up to run
as a permanent job (similar to a Started Task, but easier to operate).

Only standard interfaces are being used so that any application programmer can set up logging for his or
her application. The only requirement is that the job or monitor under which logging is performed has the
authority (RACF or similar systems) to write to the dynamically allocated datasets, where the high levels
of the datasets are specified by the user at setup time.

Chapter 1. Preparing a COBOL program for logging

There are several small programs provided in the COBOL library to show how to use the logging facility.
The examples all have JCL statements included so that the modules can be executed right away.
The job cards of the members in dataset “user-id”.SDLTRACE.DEMO.COBOL may have to be edited
before submitting the jobs, for example to insert accounting information required by your installation.

In the example module LOGMOD11 in library user-id.SDLTRACE.DEMO.COBOL we will insert all code
necessary to produce a log whenever the module is called. The COBOL code of the skeleton program is
as follows:

 Identification Division.

 Program-ID. LOGMOD11.

 Data Division.
 Working-Storage Section.
 01 Log-Record pic x(80).

 Linkage Section.
 01 Log-Data pic x(80).

 Procedure Division using Log-Data.
 Main.
 move Log-Data to Log-Record
 goback.

 End program LOGMOD11.

This program just moves the 80-byte field supplied by the calling program to a local variable and then
returns. This in itself does not seem to be very useful. However, the code serves as a base for the “real”
logging module to be automatically created in the next step.

To extend this skeleton module with code for execution with logging just go into ISPF panel 3.4, display
the members of user-id.SDLTRACE.DEMO.CNTL, step down to member ATRACE and type “ex” (short
for “exec”) in front of it. A panel similar to the following one will be displayed:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 6 of 6

SDLTRACE FOR COBOL

User Guide

 - 30 -

Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id SDLTRACE.DEMO.COBOL_________________
Input member LOGMOD11
Output member LOGMXD11 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID SDLAPPL1 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 60__ (0-1440) Trace variables Y (Y/N)

Count duplicates N (Y/N) Include string #1 LOG-RECORD____________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

The values displayed in the input fields will probably be different in some locations from the ones listed
above. Please make sure that they are set to exactly the values shown here, especially the field
Trace/Log mode which should be set to “L”, and the field Include string #1 which should show
“LOG-RECORD ”, the name of the variable into which the data to be logged will be moved.

To process this panel, please enter “x” in the top right field and hit the “Enter” key. The following
messages will be generated for the input values on the panel above, (provided that the values in your
panel which you submit for execution are identical to those shown above):

SDLTRACE - Version 4.5.23 15 Mar 2015 10:02:04 user-id
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=LOGGING
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: LOGMOD11
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: LOGMXD11
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 39
SDLTRACE - MOVE TO variables: 1
SDLTRACE - Number of lines inserted: 127
SDLTRACE - Number of lines with trace: 166
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

Hitting the “Enter” key again will display the changed module LOGMXD11 in SPF edit mode:

 Identification Division.

 Program-ID. LOGMOD11.

 Data Division.
 Working-storage Section.
SDL#***--***
SDL#Y 01 SDLTR-PARM GLOBAL.
SDL#Y 05 SDLTR-VALIDCHK-A PIC X(8) VALUE 'SDLTRACE'.

SDLTRACE FOR COBOL

User Guide

 - 31 -

SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VERSION PIC X(8) VALUE 'VER 4.5 '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-DSN-HILEVEL PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-APPL-ID PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PGMNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-JOBNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TYPE PIC X(5) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TEXT PIC X(50) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-START PIC X(8) VALUE 'PERFORM '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-END PIC X(8) VALUE '--END-- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-LABEL PIC X(8) VALUE '------- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PRI-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-SEC-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-VAR-LENGTH PIC 9(4) VALUE 31 BINARY.
SDL#Y 05 SDLTR-FLD-LENGTH PIC 9(4) VALUE 13 BINARY.
SDL#Y 05 SDLTR-THRESHOLD PIC 9(4) VALUE 0 BINARY.
SDL#Y 05 SDLTR-NEWTIM PIC 9(4) VALUE 1440 BINARY.
SDL#Y 05 SDLTR-RETN-CODE PIC 9(2) VALUE 0.
SDL#Y 05 SDLTR-RETN-CBIN PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TRACE PIC 9(1) VALUE 1.
SDL#Y 88 SDLTR-TRACE-ON VALUE 1.
SDL#Y 88 SDLTR-TRACE-OFF VALUE 0.
SDL#Y 05 SDLTR-CALLER PIC X(1) VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-ASM VALUE 'A'.
SDL#Y 88 SDLTR-CALLER-COBOL VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-C VALUE 'C'.
SDL#Y 05 SDLTR-VAR-TYPE PIC X(1) VALUE SPACE.
SDL#Y 88 SDLTR-VAR-TYPE-ALL VALUE ' '.
SDL#Y 88 SDLTR-VAR-TYPE-BIN VALUE 'B'.
SDL#Y 88 SDLTR-VAR-TYPE-CHR VALUE 'C'.
SDL#Y 88 SDLTR-VAR-TYPE-DEC VALUE 'D'.
SDL#Y 88 SDLTR-VAR-TYPE-HEX VALUE 'X'.
SDL#Y 05 SDLTR-TIMESTAMP PIC X(1) VALUE 'L'.
SDL#Y 88 SDLTR-TMSTP-GMT VALUE 'G'.
SDL#Y 88 SDLTR-TMSTP-LOC VALUE 'L'.
SDL#Y 05 SDLTR-WRITE-IMM PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-WRITE-IMM-ON VALUE 1.
SDL#Y 88 SDLTR-WRITE-IMM-OFF VALUE 0.
SDL#Y 05 SDLTR-CONS-MSG-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-CONS-MSG-OFF VALUE 1.
SDL#Y 88 SDLTR-CONS-MSG-ON VALUE 0.
SDL#Y 05 SDLTR-TIMING-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TIMING-ON VALUE 1.
SDL#Y 88 SDLTR-TIMING-OFF VALUE 0.
SDL#Y 05 SDLTR-TRACECTL PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TRACECTL-ON VALUE 1.
SDL#Y 88 SDLTR-TRACECTL-OFF VALUE 0.
SDL#Y 05 SDLTR-LOG-MODE-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-LOG-MODE-ON VALUE 1.
SDL#Y 88 SDLTR-LOG-MODE-OFF VALUE 0.
SDL#Y 05 SDLTR-DUPLICAT-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-DUPLICAT-ON VALUE 1.
SDL#Y 88 SDLTR-DUPLICAT-OFF VALUE 0.
SDL#Y 05 SDLTR-SKIP-NAME1 PIC X(8) VALUE LOW-VALUE.

SDLTRACE FOR COBOL

User Guide

 - 32 -

SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME2 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME3 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-RESERVED PIC X(18) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SYSTEM-AREA PIC X(1800) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VALIDCHK-Z PIC X(8) VALUE 'SDLTRACE'.
SDL#Y
SDL#Y 01 SDLTR-WORK GLOBAL.
SDL#Y 05 SDLTR-LENGTH PIC S9(9) BINARY.
SDL#Y 05 SDLTR-SAVERC PIC S9(4) BINARY.
SDL#Y 05 SDLTR-INDEX1 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX2 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX1-NUM PIC 9(8).
SDL#Y 05 SDLTR-INDEX2-NUM PIC 9(8).
SDL#Y 05 SDLTR-SET-TRUE PIC X(4) VALUE 'TRUE'.
SDL#Y 05 SDLTR-GEN-DATE PIC X(11) VALUE '15 Mar 2015'.
SDL#Y 05 SDLTRACE PIC X(8) VALUE 'SDLTRACE'.
SDL#***--***
 01 Log-Record pic x(80).

 Linkage Section.
 01 Log-Data pic x(80).

 Procedure Division using Log-data.
SDL#***--***
SDL#A START-TRACE-INITIALIZATION.
SDL#S MOVE 'START' TO SDLTR-TYPE
SDL#N MOVE 'LOGMOD11' TO SDLTR-PGMNAME
SDL#K MOVE 'user-id ' TO SDLTR-DSN-HILEVEL
SDL#K MOVE 'SDLAPPL1' TO SDLTR-APPL-ID
SDL#K MOVE '* ' TO SDLTR-JOBNAME
SDL#K MOVE 0 TO SDLTR-THRESHOLD
SDL#K MOVE 100 TO SDLTR-PRI-TRKS
SDL#K MOVE 100 TO SDLTR-SEC-TRKS
SDL#K MOVE 60 TO SDLTR-NEWTIM
SDL#K SET SDLTR-WRITE-IMM-OFF TO TRUE
SDL#K SET SDLTR-TRACECTL-OFF TO TRUE
SDL#K SET SDLTR-CONS-MSG-ON TO TRUE
SDL#K SET SDLTR-LOG-MODE-ON TO TRUE
SDL#K SET SDLTR-DUPLICAT-OFF TO TRUE
SDL#K SET SDLTR-TIMING-OFF TO TRUE
SDL#K SET SDLTR-TMSTP-LOC TO TRUE
SDL#K SET SDLTR-TRACE-ON TO TRUE
SDL#R * MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#C * CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#O * MOVE SDLTR-SAVERC TO RETURN-CODE.
SDL#D .
SDL#***--***
 Main.
 move Log-Data to Log-Record
SDL#***--***
SDL#R MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#I MOVE 'V1' TO SDLTR-TYPE
SDL#F MOVE 'Log-Record' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE Log-Record
SDL#H BY CONTENT LENGTH OF Log-Record
SDL#E END-CALL
SDL#O MOVE SDLTR-SAVERC TO RETURN-CODE
SDL#***--***
SDL#***--***
SDL#R * MOVE RETURN-CODE TO SDLTR-SAVERC

SDLTRACE FOR COBOL

User Guide

 - 33 -

SDL#Z * MOVE 'STOP ' TO SDLTR-TYPE
SDL#C * CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#O * MOVE SDLTR-SAVERC TO RETURN-CODE
SDL#***--***
 goback.

 End program LOGMOD11.

The program above now contains all necessary statements for a basic logging function. After making the
changes to the JCL (as required by your installation) you can submit the job for compilation. It will then be
linked into the load library under the name LOGMOD11. The source is stored under LOGMXD11 to
distinguish it from the original code.

The logging module LOGMOD11 can be called from any program with 80 bytes of data to be logged. As
an example look at module SAMPLG11 in library “user-id”.SDLTRACE.DEMO.COBOL:

 ID Division.

 Program-ID SAMPLG11.

 Data Division.

 Working-Storage Section.

 01 log-data pic x(80) value space.
 01 log-routine pic x(8) value 'LOGMOD11'.
 01 application-1 pic x(8) value 'SAMPLG11'.

 Procedure Division.
 move '--- Logging example ---' to log-data
 call log-routine using log-data
 perform 10 times
 move 'Data to be logged' to log-data
 call log-routine using log-data
 end-perform
 move '--- End Logging example ---' to log-data
 goback.

 Program-ID SAMPLG11.

The program calls the log routine LOGMOD11, first with a heading line, then several times with identical
data, and at last with a terminating line:

When this program is run, a log dataset is allocated using the parameters from the panel that was used to
construct the log module. The name of the dataset is listed in the job output and consists of the user-id,
the application-id, the jobname, a code representing the Job-ID and the date and time of allocation:

user-id.SDLAPPL1.SAMPLG11.ZL.D110315.T1109L

The data to be logged is written into this dataset together with a timestamp and some other information.

--- Logging example ---
Data to be logged
Data to be logged
Data to be logged
Data to be logged
Data to be logged
Data to be logged
Data to be logged
Data to be logged
Data to be logged
Data to be logged
--- End Logging example ---

SDLTRACE FOR COBOL

User Guide

 - 34 -

Each log line is actually 133 bytes long, out of which only the first 80 are shown in the example above
because all 133 bytes will not fit on one line in this document. The remaining 53 bytes of each line are
listed here separately:

 SAMPLG11SAMPLG11E003 1 L 2015-03-15 11:09:42.470008
 SAMPLG11SAMPLG11E003 1 L 2015-03-15 11:09:42.509587
 SAMPLG11SAMPLG11E003 1 L 2015-03-15 11:09:42.509607
 SAMPLG11SAMPLG11E003 1 L 2015-03-15 11:09:42.509621
 SAMPLG11SAMPLG11E003 1 L 2015-03-15 11:09:42.509635
 SAMPLG11SAMPLG11E003 1 L 2015-03-15 11:09:42.509649
 SAMPLG11SAMPLG11E003 1 L 2015-03-15 11:09:42.509664
 SAMPLG11SAMPLG11E003 1 L 2015-03-15 11:09:42.509679
 SAMPLG11SAMPLG11E003 1 L 2015-03-15 11:09:42.509694
 SAMPLG11SAMPLG11E003 1 L 2015-03-15 11:09:42.509708
 SAMPLG11SAMPLG11E003 1 L 2015-03-15 11:09:42.509722
 SAMPLG11SAMPLG11E003 1 L 2015-03-15 11:09:42.511903

As seen above, all 80-byte log records are displayed just as they were produced by the program.
The information to the right of each log record consist of the following:

First the name of the program that called the log-routine is listed. The log-routine determines the caller by
stepping back in the call chain to locate the actual name, which may sometimes not be possible. In that
case an asterisk “*” is listed to indicate that no valid name could be found. For more details on this feature
please see chapter 5: “Determining the names of calling programs”.

The caller name is followed by the name of the job which in our case is identical to the name of the caller.
Adjacent to the jobname is the name of the system image on which the job is executed. Following that is
a four-byte field containing the duplication counter, indicating the number of occurrences of lines with
identical data in column 1 through 80. This check for identical data, however, is only performed if the field
Count duplicates is set to “Y” in the ATRACE panel that is used to generate the log routine. Since
this parameter was set to “N” when LOGMOD11 was created, there is no check for duplicates, each
record is shown although they are mostly identical and the duplication counter is 1 for each record.
The ‘L’ which follows is the mode indicator. For trace records it is set to ‘T’, for log records it is set to ‘L’.
The date and time that follows the mode indicator is identical for log and trace records.

For an example with duplicates we will now create a log module using the template LOGMOD12 which is
an exact copy of the skeleton LOGMOD11. The resulting log module will be different, however, since we
will turn on checking for duplicates. Please go to library.“user-id”.SDLTRACE.DEMO.CNTL, step down to
member ATRACE and type “ex” (short for “exec”) in front of it. The panel being displayed should be
modified slightly to look like this:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 8 of 6
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id SDLTRACE.DEMO.COBOL_________________
Input member LOGMOD12
Output member LOGMXD12 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID SDLAPPL2 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 60__ (0-1440) Trace variables Y (Y/N)

Count duplicates Y (Y/N) Include string #1 LOG-RECORD____________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________

SDLTRACE FOR COBOL

User Guide

 - 35 -

Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

Please make sure that the values are indeed as shown above, especially the field Count duplicates
the value of which should be set to “Y”. This will turn on the checking for duplicates when creating log
records.

To process this panel, please enter “x” in the top right field and hit the “Enter” key. The following
messages will be generated for the input values on the panel above:

SDLTRACE - Version 4.5.23 15 Mar 2015 11:22:01 user-id
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=LOGGING
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: LOGMOD12
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: LOGMXD12
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 39
SDLTRACE - MOVE TO variables: 1
SDLTRACE - Number of lines inserted: 127
SDLTRACE - Number of lines with trace: 166
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

Hitting the “Enter” key again will display the changed module LOGMXD12 in SPF edit mode. This
module should be identical to the one we did have before, except for one line:

SDL#K SET SDLTR-DUPLICAT-ON TO TRUE

In the previous version of LOGMOD11 this line had been:

SDL#K SET SDLTR-DUPLICAT-OFF TO TRUE

which caused the checking for duplicates to be suppressed. Please submit the job for compilation and
linking under the name LOGMOD12.

The program that shows the effect of duplicate checking is SAMPLG12. It is a copy of SAMPLG11,
except that it is calling LOGMOD12 instead of LOGMOD11. When SAMPLG12 is run the following log
dataset will be produced:

--- Logging example ---
Data to be logged
Data to be logged
--- End Logging example ---

with the rightmost 53 columns:

 SAMPLG12SAMPLG12E003 1 L 2015-03-15 11:23:39.674058
 SAMPLG12SAMPLG12E003 1 L 2015-03-15 11:23:39.707410
 SAMPLG12SAMPLG12E003 9 L 2015-03-15 11:23:39.707542
 SAMPLG12SAMPLG12E003 1 L 2015-03-15 11:23:39.709599

Line 2 is listed as before. Since line 3 to 11 are identical to line 2, they are displayed in just one line with
the duplication counter set to 9 (9 lines equal to the immediately preceding line).

SDLTRACE FOR COBOL

User Guide

 - 36 -

Duplication checking should be used with care, because it might yield unexpected results as the following
example will show. Please look at program SAMPLG13 in library “user-id”.SDLTRACE.DEMO.COBOL:

 ID Division.

 Program-ID SAMPLG13.

 Data Division.

 Working-Storage Section.
 01 log-data pic x(80) value space.
 01 log-routine pic x(8) value 'LOGMOD12'.

 Procedure Division.
 move '--- Logging example ---' to log-data
 call log-routine using log-data
 perform 10 times
 move 'Data to be logged' to log-data
 call log-routine using log-data
 end-perform
 goback.

 End Program SAMPLG13.

The program is similar to SAMPLG12 except that the terminating line is missing. When this program is
run, the following log records are being created:

--- Logging example ---
Data to be logged

with the 53 rightmost columns:

 SAMPLG13SAMPLG13E003 1 L 2015-03-15 11:28:26.216808
 SAMPLG13SAMPLG13E003 2 L 2015-03-15 11:28:26.249052

Why are there only two log lines with only the first one of the ten duplicate lines listed? The explanation is
simple: When the log routine detects the first equal line, it begins to count without writing anything to the
log file since the next call might again be an equal line, and this continues until a call with an unequal line
forces the accumulated data to be written to the log dataset. However, in this case this terminating call
never comes because the caller simply stops without giving the log routine a chance to clear its buffers.

Usually log records are not identical and for simple logging applications, where the length of one record is
just 80 bytes, using the check for duplicates is not recommended. The use of duplicate checking is very
useful, however, when the length of a log item is larger than 80 and the information to be recorded is
variable, with many records that are smaller than the maximum allowed. For more information please see
the chapter: ”Logging large data items”.

The timestamp is formatted by the trace engine which reads the system clock immediately before storing
the generated log record into the trace buffer. Thus for every log record the time of its creation is stored,
which can be used to compute elapsed times between arbitrary events. In the chapter “Measuring
execution times” this will be explained in more detail.

SDLTRACE FOR COBOL

User Guide

 - 37 -

The examples above show the basic logging function. There are many additional options which can be
specified in the main panel ATRACE and whose use is explained in the following chapters.

Before doing that, however, here is a brief look at the top line. It does not specify a function or option, it is
rather used to control the panel itself:

Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)

There are five letters that may be entered in the input field above: J, X, D, N and P. (Lower case entries
are automatically translated to upper case). J and X are used to have the specified parameters in the
panel processed by the COBOL SDLTRACE pre-processor “SDLPREP”, a REXX program that scans the
module to be prepared for logging. There are two modes of operation for this pre-processor: batch and
TSO. In batch mode a job is prepared that can be submitted for execution. In TSO mode the pre-
processor is called directly from the panel. Selection between the two modes is made by specifying “j” or
“x” respectively. In the examples we will always use “x” followed by the “Enter” key to submit the panel
for execution in TSO. Of course you could also use “j” and generate the programs in batch mode if you
prefer to run REXX procedures that way.

There may be up to nine copies of the panel with different parameters that are stored in the user’s ISPF
profile dataset, and the letters “n” and “p” may be used to switch between them. A panel that is not
needed anymore can be deleted by specifying “d”.

A panel does not have an explicit name. Therefore the panels are distinguished by a combination of the
four values:

 Input dataset
 Output dataset
 Input member
 Output member

A new panel is generated automatically if any of the four values above is changed and if less than nine
panels exist in the users ISPF profile. If nine panels are already defined, then a change of any of the four
values above will replace the current panel upon processing.

The additional values (I/R/E) may also be used. They are a combination of the edit options
Insert/Remove/Edit and the action “x”.

In the following chapters some of the features of SDLTRACE are explained in more detail.

SDLTRACE FOR COBOL

User Guide

 - 38 -

Chapter 2. Controlling the allocation of log datasets

There are four parameters to control the allocation of log datasets: DSN qualifier, Application-ID, space
and time. These parameters are specified on the ATRACE panel in the section:

DSN qualifier user-id_ Trace/Log mode L (T/L)
Application-ID SDLAPPL2 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 60__ (0-1440) Trace variables Y (Y/N)

The DSN qualifier specifies the high level of the log dataset that is automatically allocated when the
first call to the log routine is issued. It may be any name which is a valid DSN and for which the job has
the authorization (in RACF or similar systems) for allocation. Within all sample jobs we use the current
user’s ID which of course does have this authorization when the jobs are submitted by TSO. If the
program with logging is to be executed in another environment, for example in CICS, IMS, WLM, etc.,
then the high level should be one that is authorized for “Write Access” in those systems.

The DSN qualifier is not limited to just one level; it could also be ABC.LOG, for example (if allocation
authority for ABC.LOG exists). In case that this authorization is missing, it will not be possible to allocate
the log dataset and an error message will be issued. No log data will be produced in this case; the
program, however, will be executed as if no log code were present.

The Application-ID determines the second level of the log dataset name. It may be any valid DSN
level and is used to distinguish between different programs or a set of programs belonging to a group.
If in one job step several programs with log code are executed and the application-ID is the same, then
the log data is recorded in the single dataset with that particular application-ID. This enables the user to
group log data according to individual requirements.

In the first log routine used above we did have the application-ID “SDLAPPL1”, which was permanently
compiled into the routine. If another application-ID were required we could of course generate another log
routine with a new application-ID. There is, however, a better way to control application-IDs, and that is to
make them variable, so that the calling program actually supplies it. For an example please look at
module LOGMOD21 in library ”user-id”.SDLTRACE.DEMO.COBOL:

 Identification Division.
 Program-ID. LOGMOD21.

 Data Division.
 Working-storage Section.
 01 Log-Record pic x(80).

 Linkage Section.
 01 Log-Data pic x(80).
 01 Log-Appl pic x(8).

 Procedure Division using Log-Data Log-Appl.
 Main.
 move Log-Appl to SDLTR-APPL-ID
 move Log-Data to Log-Record
 goback.

 End program LOGMOD21.

When this program is compiled the way it is then an error is generated because the variable
SDLTR-APPL-ID is not defined. This is normal since the program is not yet complete, but rather only a
skeleton for generation of the “real” LOGMOD21 by the Cobol SDLTRACE pre-processor.

SDLTRACE FOR COBOL

User Guide

 - 39 -

Just as for example LOGMOD11, please call up the panel ATRACE again by going to the library
“user-id”.SDLTRACE.DEMO.CNTL, step down to member ATRACE and type “ex” in front of it.
Then please set the values according to the listing shown here:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 6 of 6
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id.SDLTRACE.DEMO.COBOL_________________
Input member LOGMOD21
Output member LOGMXD21 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID ________ Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 60__ (0-1440) Trace variables Y (Y/N)

Count duplicates N (Y/N) Include string #1 LOG-RECORD____________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

The application-ID is left blank because we will supply it later with each individual logging call. Also
please make sure that the value of Count duplicates is set to “N“ . When this panel is processed by
entering “x” in the top right corner and hitting the “Enter” key we will get the following messages:

SDLTRACE - Version 4.5.23 15 Mar 2015 12:47:05 user-id
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=LOGGING
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: LOGMOD21
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: LOGMXD21
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 40
SDLTRACE - MOVE TO variables: 1
SDLTRACE - Number of lines inserted: 127
SDLTRACE - Number of lines with trace: 169
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

Now hit “Enter” , and the completed version of LOGMOD21 will be displayed:

 Identification Division.
 Program-ID. LOGMOD21.

 Data Division.
 Working-Storage Section.

SDLTRACE FOR COBOL

User Guide

 - 40 -

SDL#***--***
SDL#Y 01 SDLTR-PARM GLOBAL.
SDL#Y 05 SDLTR-VALIDCHK-A PIC X(8) VALUE 'SDLTRACE'.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VERSION PIC X(8) VALUE 'VER 4.5 '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-DSN-HILEVEL PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-APPL-ID PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PGMNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-JOBNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TYPE PIC X(5) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TEXT PIC X(50) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-START PIC X(8) VALUE 'PERFORM '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-END PIC X(8) VALUE '--END-- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-LABEL PIC X(8) VALUE '------- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PRI-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-SEC-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-VAR-LENGTH PIC 9(4) VALUE 31 BINARY.
SDL#Y 05 SDLTR-FLD-LENGTH PIC 9(4) VALUE 13 BINARY.
SDL#Y 05 SDLTR-THRESHOLD PIC 9(4) VALUE 0 BINARY.
SDL#Y 05 SDLTR-NEWTIM PIC 9(4) VALUE 1440 BINARY.
SDL#Y 05 SDLTR-RETN-CODE PIC 9(2) VALUE 0.
SDL#Y 05 SDLTR-RETN-CBIN PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TRACE PIC 9(1) VALUE 1.
SDL#Y 88 SDLTR-TRACE-ON VALUE 1.
SDL#Y 88 SDLTR-TRACE-OFF VALUE 0.
SDL#Y 05 SDLTR-CALLER PIC X(1) VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-ASM VALUE 'A'.
SDL#Y 88 SDLTR-CALLER-COBOL VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-C VALUE 'C'.
SDL#Y 05 SDLTR-VAR-TYPE PIC X(1) VALUE SPACE.
SDL#Y 88 SDLTR-VAR-TYPE-ALL VALUE ' '.
SDL#Y 88 SDLTR-VAR-TYPE-BIN VALUE 'B'.
SDL#Y 88 SDLTR-VAR-TYPE-CHR VALUE 'C'.
SDL#Y 88 SDLTR-VAR-TYPE-DEC VALUE 'D'.
SDL#Y 88 SDLTR-VAR-TYPE-HEX VALUE 'X'.
SDL#Y 05 SDLTR-TIMESTAMP PIC X(1) VALUE 'L'.
SDL#Y 88 SDLTR-TMSTP-GMT VALUE 'G'.
SDL#Y 88 SDLTR-TMSTP-LOC VALUE 'L'.
SDL#Y 05 SDLTR-WRITE-IMM PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-WRITE-IMM-ON VALUE 1.
SDL#Y 88 SDLTR-WRITE-IMM-OFF VALUE 0.
SDL#Y 05 SDLTR-CONS-MSG-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-CONS-MSG-OFF VALUE 1.
SDL#Y 88 SDLTR-CONS-MSG-ON VALUE 0.
SDL#Y 05 SDLTR-TIMING-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TIMING-ON VALUE 1.
SDL#Y 88 SDLTR-TIMING-OFF VALUE 0.
SDL#Y 05 SDLTR-TRACECTL PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TRACECTL-ON VALUE 1.
SDL#Y 88 SDLTR-TRACECTL-OFF VALUE 0.
SDL#Y 05 SDLTR-LOG-MODE-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-LOG-MODE-ON VALUE 1.
SDL#Y 88 SDLTR-LOG-MODE-OFF VALUE 0.
SDL#Y 05 SDLTR-DUPLICAT-IND PIC 9(1) VALUE 0.

SDLTRACE FOR COBOL

User Guide

 - 41 -

SDL#Y 88 SDLTR-DUPLICAT-ON VALUE 1.
SDL#Y 88 SDLTR-DUPLICAT-OFF VALUE 0.
SDL#Y 05 SDLTR-SKIP-NAME1 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME2 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME3 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-RESERVED PIC X(18) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SYSTEM-AREA PIC X(1800) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VALIDCHK-Z PIC X(8) VALUE 'SDLTRACE'.
SDL#Y
SDL#Y 01 SDLTR-WORK GLOBAL.
SDL#Y 05 SDLTR-LENGTH PIC S9(9) BINARY.
SDL#Y 05 SDLTR-SAVERC PIC S9(4) BINARY.
SDL#Y 05 SDLTR-INDEX1 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX2 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX1-NUM PIC 9(8).
SDL#Y 05 SDLTR-INDEX2-NUM PIC 9(8).
SDL#Y 05 SDLTR-SET-TRUE PIC X(4) VALUE 'TRUE'.
SDL#Y 05 SDLTR-GEN-DATE PIC X(11) VALUE '20 Jul 2015'.
SDL#Y 05 SDLTRACE PIC X(8) VALUE 'SDLTRACE'.
SDL#***--***
 01 Log-Record pic x(80).

 Linkage Section.
 01 Log-Data pic x(80).
 01 Log-Appl pic x(8).

 Procedure Division using Log-Data Log-Appl.
SDL#***--***
SDL#A START-TRACE-INITIALIZATION.
SDL#S MOVE 'START' TO SDLTR-TYPE
SDL#N MOVE 'LOGMOD21' TO SDLTR-PGMNAME
SDL#K MOVE 'user-id ' TO SDLTR-DSN-HILEVEL
SDL#K MOVE ' ' TO SDLTR-APPL-ID
SDL#K MOVE '* ' TO SDLTR-JOBNAME
SDL#K MOVE 0 TO SDLTR-THRESHOLD
SDL#K MOVE 100 TO SDLTR-PRI-TRKS
SDL#K MOVE 100 TO SDLTR-SEC-TRKS
SDL#K MOVE 60 TO SDLTR-NEWTIM
SDL#K SET SDLTR-WRITE-IMM-OFF TO TRUE
SDL#K SET SDLTR-TRACECTL-OFF TO TRUE
SDL#K SET SDLTR-CONS-MSG-ON TO TRUE
SDL#K SET SDLTR-LOG-MODE-ON TO TRUE
SDL#K SET SDLTR-DUPLICAT-OFF TO TRUE
SDL#K SET SDLTR-TIMING-OFF TO TRUE
SDL#K SET SDLTR-TMSTP-LOC TO TRUE
SDL#K SET SDLTR-TRACE-ON TO TRUE
SDL#R * MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#C * CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#O * MOVE SDLTR-SAVERC TO RETURN-CODE.
SDL#D .
SDL#***--***
 Main.
 move Log-Appl to SDLTR-APPL-ID
 move Log-Data to Log-Record
SDL#***--***
SDL#R MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#I MOVE 'V1' TO SDLTR-TYPE
SDL#F MOVE 'Log-Record' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE Log-Record
SDL#H BY CONTENT LENGTH OF Log-Record

SDLTRACE FOR COBOL

User Guide

 - 42 -

SDL#E END-CALL
SDL#O MOVE SDLTR-SAVERC TO RETURN-CODE
SDL#***--***
SDL#***--***
SDL#R * MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#Z * MOVE 'STOP ' TO SDLTR-TYPE
SDL#C * CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#O * MOVE SDLTR-SAVERC TO RETURN-CODE
SDL#***--***
 goback.
 End program LOGMOD21.

This completed version of LOGMOD21 is saved under the name of LOGMXD21 to distinguish it from the
skeleton LOGMOD21. Before hitting PF3 however, please submit the job for compilation and linkage into
the load library. The load module is called LOGMOD21 and is now ready for use.

An example for the use of LOGMOD21 can be found in “user-id”.SDLTRACE.DEMO.COBOL in program
SAMPLG21:

 ID Division.

 Program-ID SAMPLG21.

 Data Division.

 Working-Storage Section.
 01 log-data pic x(80).
 01 log-routine pic x(8) value 'LOGMOD21'.
 01 app-name pic x(8).

 Procedure Division.
 move 'LOG-DATA for Application 2X' to log-data
 move 'SDLAPP2X' to app-name
 call log-routine using log-data app-name

 move 'LOG-DATA for Application 2Y' to log-data
 move 'SDLAPP2Y' to app-name
 call log-routine using log-data app-name
 perform 5 times
 move 'More LOG-DATA for Application 2X' to log-data
 move 'SDLAPP2X' to app-name
 call log-routine using log-data app-name

 move 'More LOG-DATA for Application 2Y' to log-data
 move 'SDLAPP2Y' to app-name
 call log-routine using log-data app-name
 end-perform

 goback.

 End Program SAMPLG21.

When this program is executed, two log datasets are being created and their names listed in the Joblog:

+SDLTRACE - user-id.SDLAPP2X.SAMPLG21.A3.D150315.T1258L
+SDLTRACE - user-id.SDLAPP2Y.SAMPLG21.A3.D150315.T1258L

These two datasets will contain the following information. In the first one we have:

LOG-DATA for Application 2
More LOG-DATA for Application 2X
More LOG-DATA for Application 2X
More LOG-DATA for Application 2X

SDLTRACE FOR COBOL

User Guide

 - 43 -

More LOG-DATA for Application 2X
More LOG-DATA for Application 2X

 SAMPLG21SAMPLG21E003 1 L 2015-03-15 12:58:36.649085
 SAMPLG21SAMPLG21E003 1 L 2015-03-15 12:58:36.728177
 SAMPLG21SAMPLG21E003 1 L 2015-03-15 12:58:36.728219
 SAMPLG21SAMPLG21E003 1 L 2015-03-15 12:58:36.728258
 SAMPLG21SAMPLG21E003 1 L 2015-03-15 12:58:36.728298
 SAMPLG21SAMPLG21E003 1 L 2015-03-15 12:58:36.728337

and in the second one:

LOG-DATA for Application 3
More LOG-DATA for Application 2Y
More LOG-DATA for Application 2Y
More LOG-DATA for Application 2Y
More LOG-DATA for Application 2Y
More LOG-DATA for Application 2Y

 SAMPLG21SAMPLG21E003 1 L 2015-03-15 12:58:36.693061
 SAMPLG21SAMPLG21E003 1 L 2015-03-15 12:58:36.728200
 SAMPLG21SAMPLG21E003 1 L 2015-03-15 12:58:36.728238
 SAMPLG21SAMPLG21E003 1 L 2015-03-15 12:58:36.728278
 SAMPLG21SAMPLG21E003 1 L 2015-03-15 12:58:36.728318
 SAMPLG21SAMPLG21E003 1 L 2015-03-15 12:58:36.728358

As can be seen in program SAMPLG21, there may be many different application names supplied to
LOGMOD21, so that the number of individual log datasets is actually not limited. An application can thus
have as many different log streams as it needs.

For another example please look at program SAMPLH21:

 ID Division.

 Program-ID SAMPLH21.

 Data Division.

 Working-Storage Section.

 01 log-data.
 05 log-rec pic x(13) value 'Log record # '.
 05 log-count pic 9(2) value zero.
 05 log-fill pic x(65) value space.
 01 log-routine pic x(8) value 'LOGMOD21'.
 01 app-name pic x(8) value 'SDLAPP00'.

 Procedure Division.

 perform varying log-count from 1 by 1 until log-count > 10
 move log-count to app-name(7:2)
 call log-routine using log-data app-name
 end-perform
 goback.

 End Program SAMPLH21.

This is an example of dynamically creating application names and then logging data in the corresponding
log datasets. Just run the program; ten files will be allocated and each one will contain a single log record.

SDLTRACE FOR COBOL

User Guide

 - 44 -

In addition to the first two parts of the log dataset name (high level index and application-ID), there is a
third part which is automatically inserted, and that is the name of the job or monitor under which the
program being logged is run. Following the jobname is a two-character code representing the Job-ID.

The last two parts of a log dataset name are the date and the time of its allocation in the following format:
“Dyymmdd.ThhmmL”. The last letter of the time part is set to “L” to distinguish a log file from trace files
where the last letter may be “A”, “B” or “C”.

This completes the building of a log dataset name, and the remaining two factors of allocation that the
user can control are space and time (duration during which a log dataset is active). Before going into
detail about that we will look briefly at another related matter: Job or Monitor control.

The parameter JOB-ID check is used to limit the actual logging performed by a module in an application
to just the job or all jobs starting with a certain string. An asterisk ‘*’ in this field means that a log should
be generated irrespective of the job or monitor name under which it is executed. If a name is specified
then a log is produced only if the actual job or monitor is equal to that name. If the first part of a name with
an asterisk appended (as in ‘ABC*’) is specified then a log is generated only for jobs or monitors whose
name starts with that string. For all other jobs no log is produced (i.e. no log dataset is allocated) and the
application runs as if no log code existed, except that the return-code (Register 15) passed back from
SDLTRACE is set to 4.

To preserve an application’s own return-code, just set the option Save RETURN-CODE to ‘Y ’. This
option actually means that an application’s return-code register should be preserved across the call to the
log routine. Since the invocation of SDLTRACE is an external call, there may be side-effects in
applications that rely on passing of the COBOL RETURN-CODE (Register 15). Such effects are avoided
by setting Save RETURN-CODE to ‘Y ’, which is therefore the recommended setting. Only in very
special cases where the user is aware of the possible side-affects and needs to know if a log record really
was written should this value be set to ‘N ’.

Instead of a single jobname it is also possible to provide a list of names for which logging is to be
enabled. This list is specified in library “user-id”.SDLTRACE.DEMO.ASM in the Assembler module
SDLJOBLG. For information regarding its use please see the comments in that module. To enable the
use of the list the program SDLJOBLG must be linked into SDLTRACE and the option JOB-ID check
must be set to the string “JOB-LIST“ in the ATRACE panel.

Now we look at the remaining two parameters which enable the user to control the allocation and the life
span of the log datasets.

The space parameter DSN alloc (tracks) specifies the number of tracks between 1 and 9999 to
be allocated when a log dataset is required. A new dataset will be allocated when the first dataset has
reached the number of tracks specified. This second dataset has the same number of tracks and the
same name as the first one, except that the time part reflects the new time. For an example please look at
program SAMPLI21 in library “user-id”.SDLTRACE.DEMO.COBOL:

 ID Division.

 Program-ID SAMPLI21.

 Data Division.

 Working-Storage Section.
 01 log-data pic x(80).
 01 log-routine pic x(8) value 'LOGMOD21'.
 01 app-name pic x(8) value 'SDLAPP21'.
 01 cnt pic 9(4) value zero.
 Procedure Division.
 perform varying cnt from 1 by 1 until cnt > 1000
 move 'Multiple file test, record 0000.' to log-data

SDLTRACE FOR COBOL

User Guide

 - 45 -

 move cnt to log-data(28:4)
 call log-routine using log-data app-name
 end-perform

 goback.

 End Program SAMPLI21.

When this program is run a single log file will be allocated which will then be filled with 1000 log records.
This is because the log routine LOGMOD21 was generated with a primary allocation of 100 tracks.

To test the allocation of secondary files we will now create LOGMOD22 so that just one track will be
allocated by specifying that in the ATRACE panel:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 6 of 6
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id.SDLTRACE.DEMO.COBOL_________________
Input member LOGMOD22
Output member LOGMXD22 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID ________ Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 1___ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 0___ (0-1440) Trace variables Y (Y/N)

Count duplicates N (Y/N) Include string #1 LOG-RECORD____________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

Please make sure that DSN alloc (tracks) is set to 1 to have just one track allocated for the log
dataset. When this panel is processed by entering “x” in the top right corner and hitting the “Enter” key
we will get the following messages:

SDLTRACE - Version 4.5.23 16 Mar 2015 08:19:22 user-id
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=LOGGING
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: LOGMOD22
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: LOGMXD22
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 40
SDLTRACE - MOVE TO variables: 1
SDLTRACE - Number of lines inserted: 127
SDLTRACE - Number of lines with trace: 169
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

SDLTRACE FOR COBOL

User Guide

 - 46 -

Now hit “Enter” , and the completed version of LOGMOD22 will be displayed. The only difference
compared to LOGMOD21 is in the following lines:

SDL#K MOVE 1 TO SDLTR-PRI-TRKS
SDL#K MOVE 1 TO SDLTR-SEC-TRKS

which had been before:

SDL#K MOVE 100 TO SDLTR-PRI-TRKS
SDL#K MOVE 100 TO SDLTR-SEC-TRKS

Please submit this job for compilation and linking so that we now have a log module that allocates just
one track for a log dataset. When SAMPLG22 is run the system will allocate another log dataset after 392
records since that many will fit on one track on a 3390 disk device.

When we look at the job output, however, in almost all cases we will see only one log dataset. The reason
for this is the structure of the DSN, which is formed using application name, jobname, job-ID and the
timestamp. The second DSN is therefore identical to the first one, except when the minute changes.
Since for just 1000 records the execution time is less than one second it is highly unlikely that there will
be a change in the minute part of the DSN. As a result the data will be appended to the previous log
records. (The re-allocation of the datasets after 392 records can be seen in the job JCL SMS messages).

The usual allocation size for log datasets is between 100 and 500 tracks, which allows between 39.200
and 196.000 log records to be written before a new dataset is allocated. If there is a need for larger
datasets they may of course also be specified. The largest possible allocation (9999 tracks) will allow
3.919.608 records to be stored in a single dataset before a new one is needed. In order to avoid problems
when trying to extend a dataset on the initial volume the allocation parameter “multi-volume” is set to 15.

The last parameter that is used to control allocation of log datasets is time, that is the duration during
which a dataset should be active, specified on the ATRACE panel in the variable DSN time (minutes).
Its value is specified in minutes and can be between 1 and 1440 with the restriction that it must be
divisible into 1440 without remainder. This means that there should be a whole number of equal periods
during one day.

To show the operation of the time parameter we will set the value to 1 and then run the program
SAMPLG23 which has delays built in so that it runs several minutes and forces the allocation of several
datasets because the active period for a log expires.

Now please call up ATRACE again and set its values according to the following list:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 6 of 6
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id.SDLTRACE.DEMO.COBOL_________________
Input member LOGMOD23
Output member LOGMXD23 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID ________ Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 1___ (0-1440) Trace variables Y (Y/N)

Count duplicates N (Y/N) Include string #1 LOG-RECORD____________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________

SDLTRACE FOR COBOL

User Guide

 - 47 -

Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

Please make sure that DSN time (minutes) is set to 1 to force a new log dataset to be allocated
every minute. When this panel is processed by entering “x” in the top right corner and hitting the “Enter”
key we will get the following messages:

SDLTRACE - Version 4.5.23 16 Mar 2015 08:32:18 USER-ID
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: LOGMOD23
SDLTRACE - Output library: uder-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: LOGMXD23
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 40
SDLTRACE - MOVE TO variables: 1
SDLTRACE - Number of lines inserted: 127
SDLTRACE - Number of lines with trace: 169
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

Now hit “Enter” , and the completed version of LOGMOD23 will be displayed. The only change to
LOGMOD21 is in the following line:

SDL#K MOVE 1 TO SDLTR-NEWTIM

which sets the time parameter to one minute. Now submit this job for compilation and linking, so that we
have a log module that allocates a new log dataset every minute. The program SAMPLG23 in library
“user-id”.SDLTRACE.DEMO.COBOL is used to test this:

 ID Division.

 Program-ID SAMPLG23.

 Data Division.

 Working-Storage Section.

 01 log-data.
 05 log-rec pic x(13) value 'Log record # '.
 05 log-count pic 9(5) value zero.
 05 log-fill pic x(62) value space.
 01 log-routine pic x(8) value 'LOGMOD23'.
 01 app-name pic x(8) value 'SDLAPP23'.

 01 wait pic x(8) value 'SDLWAIT'.
 01 wait-parm.
 05 pic s9(4) comp value 8.
 05 wait-time.
 10 wait-time-hh pic 9(2) value zero.
 10 wait-time-mm pic 9(2) value zero.
 10 wait-time-ss pic 9(2) value 1.

SDLTRACE FOR COBOL

User Guide

 - 48 -

 10 wait-time-th pic 9(2) value zero.

 Procedure Division.

 perform varying log-count from 1 by 1 until log-count > 180
 call log-routine using log-data app-name
 call wait using wait-parm
 end-perform
 goback.

 end program SAMPLG23.

This program writes 180 log records, and after each of the writes it waits for one second before writing the
next one. This is done by calling SDLWAIT, a special module which is used to introduce waits in COBOL
programs. The source code is stored in library “user-id”.SDLTRACE.DEMO.ASM, the load module is
linked into “user-id”.SDLTRACE.DEMO.LOAD so that it can be used by any of the sample programs.

When SAMPLG23 is run it allocates the first log dataset and records data until the minute value of the
system clock changes. Then the current dataset is closed and a new one is allocated. This continues until
180 log records are written. The log datasets produced look like this:

User-id.SDLAPP23.SAMPLG23.FT.D150316.T0845L
User-id.SDLAPP23.SAMPLG23.FT.D150316.T0846L
User-id.SDLAPP23.SAMPLG23.FT.D150316.T0847L
User-id.SDLAPP23.SAMPLG23.FT.D150316.T0848L

The first dataset contains the following records:

Log record # 00001
Log record # 00002
Log record # 00003
Log record # 00004
Log record # 00005

and the rightmost 53 columns are:

 SAMPLG23SAMPLG23E003 1 L 2015-03-16 08:45:55.756583
 SAMPLG23SAMPLG23E003 1 L 2015-03-16 08:45:56.791594
 SAMPLG23SAMPLG23E003 1 L 2015-03-16 08:45:57.791690
 SAMPLG23SAMPLG23E003 1 L 2015-03-16 08:45:58.791751
 SAMPLG23SAMPLG23E003 1 L 2015-03-16 08:45:59.791893

In this particular example the job started at 08:45:55. Therefore only 5 records are contained in the first
dataset, because after five seconds the minute changes form 55 to 56 and thus a new dataset is
allocated. The other 175 records are in the remaining datasets. Their contents is similar to that of the first
dataset and it is therefore not necessary to list them here.

For most applications the parameter DSN time (minutes) is set to 60 , so that a new dataset is
allocated at least every hour. A value of zero indicates that no new dataset is to be allocated during an
entire 24-hour day; it is identical to a specification of 1440 (the number of minutes per day).

Irrespective of the time setting a new dataset is always allocated when the day changes. This is to ensure
that data of a particular day is always recorded in a dataset whose name has that day as part of its name:

user-id.SDLAPP23.SAMPLG23.AF.D150316.T0847L

The dataset above will contain only data generated on March 16, 2015.

When DSN time (minutes) is set to 1 a new dataset is allocated every minute. This is useful for
online applications under test since during logging the active log dataset is kept open even though the
transaction that is calling the log function has terminated. Thus for example under CICS one can inspect

SDLTRACE FOR COBOL

User Guide

 - 49 -

the contents of a log dataset only after the log module has closed the logfile. For more details regarding
test in online environments and especially the parameter Enable CICS test please see the special
chapter: Test in Online Environments-

SDLTRACE FOR COBOL

User Guide

 - 50 -

Similar to the examples in chapter 1, the generation of the modules described above may be performed in
batch mode automatically, without having to enter any data into the ATRACE panel manually. Please
display the relevant members by specifying on the ISPF DSN display:

e user-id.SDLTRACE.DEMO.CNTL(SDLPRE2*)

The following members will be shown:

_________ SDLPRE21
_________ SDLPRE22
_________ SDLPRE23

Just submit SDLPRE21, SDLPRE22 and SDLPRE23 by entering “j” on the command line. This will use the
ATRACE panel parameters defined in SDLPRC21, SDLPRC22 and SDLPRC23 to generate the logging
modules LOGMOD21, LOGMOD22 and LOGMOD23.

The sample jobs in the COBOL library which use these modules will be displayed when specifying:

e user-id.SDLTRACE.DEMO.COBOL(sampl*21)

on the ISPF DSN display. The following members should be shown:

_________ SAMPLG21
_________ SAMPLH21
_________ SAMPLI21

These jobs can now be run to generate the example log datasets.

Similarly the jobs SAMPLG22 and SAMPLG23 can be submitted to produce the output of the last two
examples.

So far we have always had data records with a size of 80 bytes. In the next chapter we will build a log
module which accepts a data record with a size of up to 32000 bytes.

SDLTRACE FOR COBOL

User Guide

 - 51 -

Chapter 3. Logging large data items

The standard size of one log record is 80 bytes. For applications which have larger records, a logging
module which can handle that can easily be created. The only requirement is that the size of a single log
record must be an exact multiple of 80. Thus 160, 240, 800, 3200, etc. can be defined as maximum size
of a log item supplied by the application, and a corresponding logging module will then be built. For an
example please look at module LOGMOD31 in library “user-id”.SDLTRACE.DEMO.COBOL;

 Identification Division.
 Program-ID. LOGMOD31.

 Data Division.
 Working-Storage Section.
 01 Log-Record pic x(32000).

 Linkage Section.
 01 Log-Data pic x(32000).

 Procedure Division using Log-Data.
 Main.
 move Log-Data to Log-Record
 goback.

 End Program LOGMOD31.

Just as before, this simple program serves as a base for building the actual logging module LOGMOD31
which will be able to process log items of up to 32000 bytes length. Please call up ATRACE again and set
the values according to the following values:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 6 of 6
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id.SDLTRACE.DEMO.COBOL_________________
Input member LOGMOD31
Output member LOGMXD31 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID SDLAPPL3 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 0___ (0-1440) Trace variables Y (Y/N)

Count duplicates Y (Y/N) Include string #1 LOG-RECORD____________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

Note that in this case the count for duplicates is enabled so that records with little actual data and mostly
empty space are checked and only the necessary data is recorded in the log dataset. Also make sure that
the field “Application-ID” is set to “SDLAPPL3” since the sample programs for large log records do not
provide an apllication name. Please process this panel by entering “x” in the top right entry field and hit
“Enter”. The following messages will be displayed:

SDLTRACE FOR COBOL

User Guide

 - 52 -

SDLTRACE - Version 4.5.23 16 Mar 2015 09:03:45 user-id
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=LOGGING
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: LOGMOD31
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: LOGMXD31
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 38
SDLTRACE - MOVE TO variables: 1
SDLTRACE - Number of lines inserted: 127
SDLTRACE - Number of lines with trace: 165
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

Now hit enter to get the complete LOGMOD31 module:

 Identification Division.
 Program-ID. LOGMOD31.

 Data Division.
 Working-Storage Section.
SDL#***--***
SDL#Y 01 SDLTR-PARM GLOBAL.
SDL#Y 05 SDLTR-VALIDCHK-A PIC X(8) VALUE 'SDLTRACE'.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VERSION PIC X(8) VALUE 'VER 4.5 '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-DSN-HILEVEL PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-APPL-ID PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PGMNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-JOBNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TYPE PIC X(5) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TEXT PIC X(50) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-START PIC X(8) VALUE 'PERFORM '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-END PIC X(8) VALUE '--END-- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-LABEL PIC X(8) VALUE '------- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PRI-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-SEC-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-VAR-LENGTH PIC 9(4) VALUE 31 BINARY.
SDL#Y 05 SDLTR-FLD-LENGTH PIC 9(4) VALUE 13 BINARY.
SDL#Y 05 SDLTR-THRESHOLD PIC 9(4) VALUE 0 BINARY.
SDL#Y 05 SDLTR-NEWTIM PIC 9(4) VALUE 1440 BINARY.
SDL#Y 05 SDLTR-RETN-CODE PIC 9(2) VALUE 0.
SDL#Y 05 SDLTR-RETN-CBIN PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TRACE PIC 9(1) VALUE 1.
SDL#Y 88 SDLTR-TRACE-ON VALUE 1.
SDL#Y 88 SDLTR-TRACE-OFF VALUE 0.
SDL#Y 05 SDLTR-CALLER PIC X(1) VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-ASM VALUE 'A'.

SDLTRACE FOR COBOL

User Guide

 - 53 -

SDL#Y 88 SDLTR-CALLER-COBOL VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-C VALUE 'C'.
SDL#Y 05 SDLTR-VAR-TYPE PIC X(1) VALUE SPACE.
SDL#Y 88 SDLTR-VAR-TYPE-ALL VALUE ' '.
SDL#Y 88 SDLTR-VAR-TYPE-BIN VALUE 'B'.
SDL#Y 88 SDLTR-VAR-TYPE-CHR VALUE 'C'.
SDL#Y 88 SDLTR-VAR-TYPE-DEC VALUE 'D'.
SDL#Y 88 SDLTR-VAR-TYPE-HEX VALUE 'X'.
SDL#Y 05 SDLTR-TIMESTAMP PIC X(1) VALUE 'L'.
SDL#Y 88 SDLTR-TMSTP-GMT VALUE 'G'.
SDL#Y 88 SDLTR-TMSTP-LOC VALUE 'L'.
SDL#Y 05 SDLTR-WRITE-IMM PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-WRITE-IMM-ON VALUE 1.
SDL#Y 88 SDLTR-WRITE-IMM-OFF VALUE 0.
SDL#Y 05 SDLTR-CONS-MSG-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-CONS-MSG-OFF VALUE 1.
SDL#Y 88 SDLTR-CONS-MSG-ON VALUE 0.
SDL#Y 05 SDLTR-TIMING-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TIMING-ON VALUE 1.
SDL#Y 88 SDLTR-TIMING-OFF VALUE 0.
SDL#Y 05 SDLTR-TRACECTL PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TRACECTL-ON VALUE 1.
SDL#Y 88 SDLTR-TRACECTL-OFF VALUE 0.
SDL#Y 05 SDLTR-LOG-MODE-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-LOG-MODE-ON VALUE 1.
SDL#Y 88 SDLTR-LOG-MODE-OFF VALUE 0.
SDL#Y 05 SDLTR-DUPLICAT-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-DUPLICAT-ON VALUE 1.
SDL#Y 88 SDLTR-DUPLICAT-OFF VALUE 0.
SDL#Y 05 SDLTR-SKIP-NAME1 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME2 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME3 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-RESERVED PIC X(18) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SYSTEM-AREA PIC X(1800) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VALIDCHK-Z PIC X(8) VALUE 'SDLTRACE'.
SDL#Y
SDL#Y 01 SDLTR-WORK GLOBAL.
SDL#Y 05 SDLTR-LENGTH PIC S9(9) BINARY.
SDL#Y 05 SDLTR-SAVERC PIC S9(4) BINARY.
SDL#Y 05 SDLTR-INDEX1 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX2 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX1-NUM PIC 9(8).
SDL#Y 05 SDLTR-INDEX2-NUM PIC 9(8).
SDL#Y 05 SDLTR-SET-TRUE PIC X(4) VALUE 'TRUE'.
SDL#Y 05 SDLTR-GEN-DATE PIC X(11) VALUE '28 Jul 2015'.
SDL#Y 05 SDLTRACE PIC X(8) VALUE 'SDLTRACE'.
SDL#***--***
 01 Log-Record pic x(32000).

 Linkage Section.
 01 Log-Data pic x(32000).

 Procedure Division using Log-Data.
SDL#***--***
SDL#A START-TRACE-INITIALIZATION.
SDL#S MOVE 'START' TO SDLTR-TYPE
SDL#N MOVE 'LOGMOD31' TO SDLTR-PGMNAME
SDL#K MOVE 'user-id ' TO SDLTR-DSN-HILEVEL
SDL#K MOVE 'SDLAPPL3' TO SDLTR-APPL-ID
SDL#K MOVE '* ' TO SDLTR-JOBNAME
SDL#K MOVE 0 TO SDLTR-THRESHOLD

SDLTRACE FOR COBOL

User Guide

 - 54 -

SDL#K MOVE 100 TO SDLTR-PRI-TRKS
SDL#K MOVE 100 TO SDLTR-SEC-TRKS
SDL#K MOVE 0 TO SDLTR-NEWTIM
SDL#K SET SDLTR-WRITE-IMM-OFF TO TRUE
SDL#K SET SDLTR-TRACECTL-OFF TO TRUE
SDL#K SET SDLTR-CONS-MSG-ON TO TRUE
SDL#K SET SDLTR-LOG-MODE-ON TO TRUE
SDL#K SET SDLTR-DUPLICAT-ON TO TRUE
SDL#K SET SDLTR-TIMING-OFF TO TRUE
SDL#K SET SDLTR-TMSTP-LOC TO TRUE
SDL#K SET SDLTR-TRACE-ON TO TRUE
SDL#R * MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#C * CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#O * MOVE SDLTR-SAVERC TO RETURN-CODE.
SDL#D .
SDL#***--***
 Main.
 move Log-Data to Log-Record
SDL#***--***
SDL#R MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#I MOVE 'V1' TO SDLTR-TYPE
SDL#F MOVE 'Log-Record' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE Log-Record
SDL#H BY CONTENT LENGTH OF Log-Record
SDL#E END-CALL
SDL#O MOVE SDLTR-SAVERC TO RETURN-CODE
SDL#***--***
SDL#***--***
SDL#R * MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#Z * MOVE 'STOP ' TO SDLTR-TYPE
SDL#C * CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#O * MOVE SDLTR-SAVERC TO RETURN-CODE
SDL#***--***
 goback.

 End program LOGMOD31.

The main difference to the previous log modules is the definition of a 32000-byte log record. This will
cause SDLTRACE to split the data supplied by the caller into 400 separate 80-byte data records which
will then be stored in the standard log dataset. Please submit the job above to compile and link it into the
library “user-id”.SDLTRACE.DEMO.LOAD.

To test LOGMOD31 the program SAMPLG31 in library “user-id”.SDLTRACE.DEMO.COBOL has been
provided:

 ID Division.
 Program-ID SAMPLG31.

 Data Division.

 Working-Storage Section.
 01 log-data pic x(32000) value space.
 01 log-count pic 9(5) value zero.
 01 log-routine pic x(8) value 'LOGMOD31'.

 Procedure Division.
 move '--- Logging example for large records ---' to log-data
 call log-routine using log-data
 move 'Record number 00000. The data to be logged may be of an
 - 'y size, as long as it is an exact multiple of 80. For t
 - 'his example we set the size to 32000.'
 to log-data
 perform varying log-count from 1 by 1 until log-count > 2

SDLTRACE FOR COBOL

User Guide

 - 55 -

 move log-count to log-data(15:5)
 call log-routine using log-data
 end-perform
 move '--- Last record, test complete ---' to log-data
 call log-routine using log-data
 goback.

 End Program SAMPLG31.

When this program is run it will generate a log dataset with the following lines:

-- Logging example for large records --

Record number 00001. The data to be logged may be of any size, as long as it is
an exact multiple of 80. For this example we set the size to 32000.

Record number 00002. The data to be logged may be of any size, as long as it is
an exact multiple of 80. For this example we set the size to 32000.

-- Last record, test complete --

with the rightmost 53 columns:

 SAMPLG31SAMPLG31E003 1,L 2015-03-16 09:36:14.706580
 SAMPLG31 1 2.L 2015-03-16 09:36:14.706580
 SAMPLG31 397 399.L 2015-03-16 09:36:14.706580
 SAMPLG31 1 400;L 2015-03-16 09:36:14.706580
 SAMPLG31SAMPLG31E003 1,L 2015-03-16 09:36:14.739160
 SAMPLG31 1 2.L 2015-03-16 09:36:14.739160
 SAMPLG31 1 3.L 2015-03-16 09:36:14.739160
 SAMPLG31 396 399.L 2015-03-16 09:36:14.739160
 SAMPLG31 1 400;L 2015-03-16 09:36:14.739160
 SAMPLG31SAMPLG31E003 1,L 2015-03-16 09:36:14.742044
 SAMPLG31 1 2.L 2015-03-16 09:36:14.742044
 SAMPLG31 1 3.L 2015-03-16 09:36:14.742044
 SAMPLG31 396 399.L 2015-03-16 09:36:14.742044
 SAMPLG31 1 400;L 2015-03-16 09:36:14.742044
 SAMPLG31SAMPLG31E003 1,L 2015-03-16 09:36:14.744993
 SAMPLG31 1 2.L 2015-03-16 09:36:14.744993
 SAMPLG31 397 399.L 2015-03-16 09:36:14.744993
 SAMPLG31 1 400;L 2015-03-16 09:36:14.744993

Large log records are divided up into parts of 80 bytes each, formatted just as short log records except for
some differences in the rightmost 52 bytes. In order to distinguish continuation records from single entries
the following markers are set immediately to the left of the log marker “L”. A comma “,“ denotes the first
part of a long record, a decimal point “.“ denotes all subsequent parts, and a semicolon “;“ is set to
signify the last part. The timestamp for all parts of a record is of course identical; it is the time when the
application called the logging system to store the large record.

Just as in short records the first part of a large record contains the calling program, the job or monitor
name and the system image where the job is run. The number to the left of the “L” is the part number
which for the first part is always 1. For all subsequent parts the jobname and the image are replaced by
the duplication count followed again by the part number. Thus the difference to short records is the
position of the duplication count and the addition of the part number.

SDLTRACE FOR COBOL

User Guide

 - 56 -

In the example above the first and the last record have one line of text followed by blanks. The listing
shows part number 1 with the text, followed by the first blank line in part number 2, then 397 duplicates of
part number 2 listed in part number 399 and finally the last line with the terminating semicolon.

Please note that if the parameter “Count duplicates” had not been set to “Y” then each part would
have been written and the duplication factors would all be 1.

Log records two and three are listed similarly, except that now there are two text lines and the remaining
blanks are in part number 3, then 396 duplicates in part number 399 and then the last one in number 400.

The length of the data records in the application may be variable; the only requirement is that the record
be moved to the fixed length parameter that is used in the call to the corresponding logging module.

If an application needs more than 32000-byte data records, then a log module which can handle that can
easily be set up. Just increase the length of the parameter from 32000 to the length required up to a
maximum of 200000 bytes. If the logging system is called with a larger value then the variable is
truncated to 200000 bytes and the return code is set 4, indicating that some of the data was not logged.

Of course it is possible also to generate a logging module where the length of the log-record is variable,
supplied by the application in the linkage area. The definition of the variable should be as follows:

 01 Log-Record-Length PIC S9(8) BINARY

and the code for the call to SDLTRACE should be changed from:

SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE Log-Record
SDL#H BY CONTENT LENGTH OF Log-Record

to:

SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE Log-Record
SDL#H Log-Record-Length

The fixed length of the log record defined in the log module is thus replaced by the variable value
supplied by the caller. For an example please look at LOGMOD32:

 Identification Division.
 Program-ID. LOGMOD32.

 Data Division.
 Working-Storage Section.
 01 Log-Record pic x(32000).

 Linkage Section.
 01 Log-Data pic x(32000).
 01 Log-Data-Length pic s9(8) binary.

 Procedure Division using Log-Data Log-Data-Length.
 Main.
 move Log-Data to Log-Record
 goback.

 End program LOGMOD32.

After processing this program with ATRACE using the same panel values as for LOGMOD31 we get the
following logging code:

SDLTRACE FOR COBOL

User Guide

 - 57 -

 .
 .
 01 Log-Record pic x(32000).

 Linkage Section.
 01 Log-Data pic x(32000).
 01 Log-Data-Length pic s9(8) binary.

 Procedure Division using Log-Data Log-Data-Length.
 .
 .
 Main.
 move Log-Data to Log-Record
SDL#***--***
SDL#R MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#I MOVE 'V1' TO SDLTR-TYPE
SDL#F MOVE 'Log-Record' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE Log-Record
SDL#H BY CONTENT LENGTH OF Log-Length
SDL#E END-CALL

The MOVE statement that transfers the data from the LINKAGE AREA data to the internal variable is
actually only used to trigger the generation of the SDLTRACE code and determine the length of the log
data. Since the length is supplied in the call we can now modify the generated code by deleting the
definition of Log-Record and the corresponding MOVE statement and change the CALL to use the
variable Log-Data instead:

 .
 .
 Linkage Section.
 01 Log-Data pic x(32000).
 01 Log-Data-Length pic s9(8) binary.

 Procedure Division using Log-Data Log-Data-Length.
 .
 .
 Main.
SDL#***--***
SDL#R MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#I MOVE 'V1' TO SDLTR-TYPE
SDL#F MOVE 'Log-Record' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE Log-Data
SDL#H Log-Data-Length
SDL#E END-CALL
 .
 .

The complete module can be found in library “user-id”.SDLTRACE.DEMO.COBOL under the name
LOGMXD32. Please submit it for compilation and linking to produce the load module LOGMOD32.

A sample program to test this log module is SAMPLG32:

 ID Division.
 Program-ID SAMPLG32.

 Data Division.

 Working-Storage Section.
 01 log-data pic x(32000) value space.
 01 log-data-length pic s9(8) binary value 80.
 01 log-count pic 9(5) value zero.

SDLTRACE FOR COBOL

User Guide

 - 58 -

 01 log-routine pic x(8) value 'LOGMOD32'.

 Procedure Division.
 move '-- Logging example for large records with variable leng
 - 'th data --' to log-data
 call log-routine using log-data log-data-length
 move 'Record number 00000. The data to be logged may be of an
 - 'y size, as long as it is an exact multiple of 80. This
 - 'is an example with size 00000000.' to log-data
 perform varying log-count from 1 by 1 until log-count > 4
 move log-count to log-data(15:5)
 compute log-data-length = 80 + 80 * log-count
 move log-data-length to log-data(135:8)
 call log-routine using log-data log-data-length
 end-perform
 move '-- Last record, variable test complete --' to log-data
 move 80 to log-data-length
 call log-routine using log-data log-data-length
 goback.

 End Program SAMPLG32.

When this program is run a log dataset with the following contents will be generated:

-- Logging example for large records with variable length data --
Record number 00001. The data to be logged may be of any size, as long as it is
an exact multiple of 80. This is an example with size 00000160.
Record number 00002. The data to be logged may be of any size, as long as it is
an exact multiple of 80. This is an example with size 00000240.

Record number 00003. The data to be logged may be of any size, as long as it is
an exact multiple of 80. This is an example with size 00000320.

Record number 00004. The data to be logged may be of any size, as long as it is
an exact multiple of 80. This is an example with size 00000400.

-- Last record, variable test complete --

with the rightmost 53 columns:

 SAMPLG32SAMPLG32E003 1 L 2015-07-12 12:43:54.731511
 SAMPLG32SAMPLG32E003 1,L 2015-07-12 12:43:54.767043
 SAMPLG32 1 2;L 2015-07-12 12:43:54.767043
 SAMPLG32SAMPLG32E003 1,L 2015-07-12 12:43:54.767070
 SAMPLG32 1 2.L 2015-07-12 12:43:54.767070
 SAMPLG32 1 3;L 2015-07-12 12:43:54.767070
 SAMPLG32SAMPLG32E003 1,L 2015-07-12 12:43:54.767097
 SAMPLG32 1 2.L 2015-07-12 12:43:54.767097
 SAMPLG32 1 3.L 2015-07-12 12:43:54.767097
 SAMPLG32 1 4;L 2015-07-12 12:43:54.767097
 SAMPLG32SAMPLG32E003 1,L 2015-07-12 12:43:54.767130
 SAMPLG32 1 2.L 2015-07-12 12:43:54.767130
 SAMPLG32 1 3.L 2015-07-12 12:43:54.767130
 SAMPLG32 1 4.L 2015-07-12 12:43:54.767130
 SAMPLG32 1 5;L 2015-07-12 12:43:54.767130
 SAMPLG32SAMPLG32E003 1 L 2015-07-12 12:43:54.767173

SDLTRACE FOR COBOL

User Guide

 - 59 -

Again, just as in the previous examples, the generation of the modules described above may be
performed in batch mode automatically, without having to enter any data into the ATRACE panel
manually. Please display the relevant members by specifying on the ISPF DSN display:

e user-id.SDLTRACE.DEMO.CNTL(SDLPRE3*)

The following members will be shown:

_________ SDLPRE31
_________ SDLPRE32

Just submit SDLPRE31 and SDLPRE32 by entering “j” on the command line. This will use the ATRACE
panel parameters defined in SDLPRC31 to generate the logging module LOGMOD31 as well as
LOGMOD32.

The sample jobs in the COBOL library which use these modules will be displayed when specifying:

e user-id.SDLTRACE.DEMO.COBOL(SAMPLG3*)

on the ISPF DSN display. The following members should be shown:

_________ SAMPLG31
_________ SAMPLG32

These jobs can now be run to generate the example log datasets.

So far we have created four different logging modules:

LOGMOD1x – log modules that need only one parameter: the 80-byte record to be logged.
LOGMOD2x – log modules which require the application-ID as second parameter.
LOGMOD31 – log module with one parameter and log-data that may be up to 32000 bytes long.
LOGMOD32 – log module with two parameters: log-data that may be up to 32000 bytes long
 and the (variable) length of the log-data.

In the next chapter we will set up a log module which will allow us to measure execution times.

SDLTRACE FOR COBOL

User Guide

 - 60 -

Chapter 4. Measuring execution times

Together with each log record the date and time of its creation are kept, either in local or in universal time
(GMT), denoted by a blank (the default) or an asterisk “*” in front of the timestamp. These times can be
used to compute the difference between individual events and thus arrive at elapsed times for any interval
of special interest.

However, with the built-in timing feature it is much easier to get any timing information desired.
By placing appropriate statements at relevant points in a program it is possible to measure the elapsed
times between any number of pairs of start and stop locations. The following explanations will show how
to set up a program for measuring its execution times.

Just as in the previous examples please go to library “user-id”.SDLTRACE.DEMO.COBOL and look at
module LOGMOD41:

 Identification Division.

 Program-ID. LOGMOD41.

 Data Division.
 Working-Storage Section.
 01 Log-Record pic x(80).

 Linkage Section.
 01 Log-Data pic x(80).

 Procedure Division using Log-data.
 Main.
 move Log-Data to Log-Record
 move Log-Record to Log-Data
 goback.

 End program LOGMOD41.

This program should be processed with the following ATRACE panel to convert it to a real logging
module, where the two move statements will finally make sense:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 7 of 7
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id.SDLTRACE.DEMO.COBOL_________________
Input member LOGMOD41
Output member LOGMXD41 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID SDLAPPL4 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 0___ (0-1440) Trace variables Y (Y/N)

Count duplicates N (Y/N) Include string #1 LOG-RECORD____________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing Y (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

SDLTRACE FOR COBOL

User Guide

 - 61 -

F3 = Quit ENTER = Process input

To do that please go to the library “user-id”.SDLTRACE.DEMO.CNTL, step down to member ATRACE
and type “ex” in front of it. Then please set the values according to the listing shown above. The main
difference to all previous panels is the line Enable timing , which is set to “Y“ . To process the panel,
just type “x” in the top right entry field and hit “Enter”. The following messages will be displayed:

SDLTRACE - Version 4.5.23 16 Mar 2015 10:51:46 user-id
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=LOGGING
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: LOGMOD41
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: LOGMXD41
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 39
SDLTRACE - MOVE TO variables: 1
SDLTRACE - Number of lines inserted: 126
SDLTRACE - Number of lines with trace: 165
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

Now just hit “Enter”; the completed logging module including the timing facility will be displayed.

 Identification Division.

 Program-ID. LOGMOD41.

 Data Division.
 Working-Storage Section.
SDL#***--***
SDL#Y 01 SDLTR-PARM GLOBAL.
SDL#Y 05 SDLTR-VALIDCHK-A PIC X(8) VALUE 'SDLTRACE'.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VERSION PIC X(8) VALUE 'VER 4.5 '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-DSN-HILEVEL PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-APPL-ID PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PGMNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-JOBNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TYPE PIC X(5) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TEXT PIC X(50) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-START PIC X(8) VALUE 'PERFORM '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-END PIC X(8) VALUE '--END-- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-LABEL PIC X(8) VALUE '------- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PRI-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-SEC-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-VAR-LENGTH PIC 9(4) VALUE 31 BINARY.

SDLTRACE FOR COBOL

User Guide

 - 62 -

SDL#Y 05 SDLTR-FLD-LENGTH PIC 9(4) VALUE 13 BINARY.
SDL#Y 05 SDLTR-THRESHOLD PIC 9(4) VALUE 0 BINARY.
SDL#Y 05 SDLTR-NEWTIM PIC 9(4) VALUE 1440 BINARY.
SDL#Y 05 SDLTR-RETN-CODE PIC 9(2) VALUE 0.
SDL#Y 05 SDLTR-RETN-CBIN PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TRACE PIC 9(1) VALUE 1.
SDL#Y 88 SDLTR-TRACE-ON VALUE 1.
SDL#Y 88 SDLTR-TRACE-OFF VALUE 0.
SDL#Y 05 SDLTR-CALLER PIC X(1) VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-ASM VALUE 'A'.
SDL#Y 88 SDLTR-CALLER-COBOL VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-C VALUE 'C'.
SDL#Y 05 SDLTR-VAR-TYPE PIC X(1) VALUE SPACE.
SDL#Y 88 SDLTR-VAR-TYPE-ALL VALUE ' '.
SDL#Y 88 SDLTR-VAR-TYPE-BIN VALUE 'B'.
SDL#Y 88 SDLTR-VAR-TYPE-CHR VALUE 'C'.
SDL#Y 88 SDLTR-VAR-TYPE-DEC VALUE 'D'.
SDL#Y 88 SDLTR-VAR-TYPE-HEX VALUE 'X'.
SDL#Y 05 SDLTR-TIMESTAMP PIC X(1) VALUE 'L'.
SDL#Y 88 SDLTR-TMSTP-GMT VALUE 'G'.
SDL#Y 88 SDLTR-TMSTP-LOC VALUE 'L'.
SDL#Y 05 SDLTR-WRITE-IMM PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-WRITE-IMM-ON VALUE 1.
SDL#Y 88 SDLTR-WRITE-IMM-OFF VALUE 0.
SDL#Y 05 SDLTR-CONS-MSG-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-CONS-MSG-OFF VALUE 1.
SDL#Y 88 SDLTR-CONS-MSG-ON VALUE 0.
SDL#Y 05 SDLTR-TIMING-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TIMING-ON VALUE 1.
SDL#Y 88 SDLTR-TIMING-OFF VALUE 0.
SDL#Y 05 SDLTR-TRACECTL PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TRACECTL-ON VALUE 1.
SDL#Y 88 SDLTR-TRACECTL-OFF VALUE 0.
SDL#Y 05 SDLTR-LOG-MODE-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-LOG-MODE-ON VALUE 1.
SDL#Y 88 SDLTR-LOG-MODE-OFF VALUE 0.
SDL#Y 05 SDLTR-DUPLICAT-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-DUPLICAT-ON VALUE 1.
SDL#Y 88 SDLTR-DUPLICAT-OFF VALUE 0.
SDL#Y 05 SDLTR-SKIP-NAME1 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME2 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME3 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-RESERVED PIC X(18) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SYSTEM-AREA PIC X(1800) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VALIDCHK-Z PIC X(8) VALUE 'SDLTRACE'.
SDL#Y
SDL#Y 01 SDLTR-WORK GLOBAL.
SDL#Y 05 SDLTR-LENGTH PIC S9(9) BINARY.
SDL#Y 05 SDLTR-SAVERC PIC S9(4) BINARY.
SDL#Y 05 SDLTR-INDEX1 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX2 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX1-NUM PIC 9(8).
SDL#Y 05 SDLTR-INDEX2-NUM PIC 9(8).
SDL#Y 05 SDLTR-SET-TRUE PIC X(4) VALUE 'TRUE'.
SDL#Y 05 SDLTR-GEN-DATE PIC X(11) VALUE '2 Jul 2015'.
SDL#Y 05 SDLTRACE PIC X(8) VALUE 'SDLTRACE'.
SDL#***--***
 01 Log-Record pic x(80).

 Linkage Section.
 01 Log-Data pic x(80).

SDLTRACE FOR COBOL

User Guide

 - 63 -

 Procedure Division using Log-data.
SDL#***--***
SDL#A START-TRACE-INITIALIZATION.
SDL#S MOVE 'START' TO SDLTR-TYPE
SDL#N MOVE 'LOGMOD41' TO SDLTR-PGMNAME
SDL#K MOVE 'user-id ' TO SDLTR-DSN-HILEVEL
SDL#K MOVE 'SDLAPPL4' TO SDLTR-APPL-ID
SDL#K MOVE '* ' TO SDLTR-JOBNAME
SDL#K MOVE 0 TO SDLTR-THRESHOLD
SDL#K MOVE 100 TO SDLTR-PRI-TRKS
SDL#K MOVE 100 TO SDLTR-SEC-TRKS
SDL#K MOVE 0 TO SDLTR-NEWTIM
SDL#K SET SDLTR-WRITE-IMM-OFF TO TRUE
SDL#K SET SDLTR-TRACECTL-OFF TO TRUE
SDL#K SET SDLTR-CONS-MSG-ON TO TRUE
SDL#K SET SDLTR-LOG-MODE-ON TO TRUE
SDL#K SET SDLTR-DUPLICAT-OFF TO TRUE
SDL#K SET SDLTR-TIMING-ON TO TRUE
SDL#K SET SDLTR-TMSTP-LOC TO TRUE
SDL#K SET SDLTR-TRACE-ON TO TRUE
SDL#R * MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#C * CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#O * MOVE SDLTR-SAVERC TO RETURN-CODE.
SDL#D .
SDL#***--***
 Main.
 move Log-Data to Log-Record
SDL#***--***
SDL#R MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#I MOVE 'V1' TO SDLTR-TYPE
SDL#F MOVE 'Log-Record' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE Log-Record
SDL#H BY CONTENT LENGTH OF Log-Record
SDL#E END-CALL
SDL#O MOVE SDLTR-SAVERC TO RETURN-CODE
SDL#***--***
 move Log-Record to Log-Data
SDL#***--***
SDL#R * MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#Z * MOVE 'STOP ' TO SDLTR-TYPE
SDL#C * CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#O * MOVE SDLTR-SAVERC TO RETURN-CODE
SDL#***--***
 goback.

 End program LOGMOD41.

Please submit the job above to compile and link it into the library “user-id”.SDLTRACE.DEMO.LOAD.

To test LOGMOD41 the program SAMPLG41 in library “user-id”.SDLTRACE.DEMO.COBOL has been
provided:

 ID Division.

 Program-ID SAMPLG41.

 Data Division.

 Working-Storage Section.

 01 log-data.

SDLTRACE FOR COBOL

User Guide

 - 64 -

 05 log-rec pic x(13) value 'Log record # '.
 05 log-count pic 9(5) value zero.
 05 log-fill pic x(62) value space.
 01 log-routine pic x(8) value 'LOGMOD41'.

 Procedure Division.

 perform varying log-count from 1 by 1 until log-count > 100
 call log-routine using log-data
 end-perform
 goback.

 end program SAMPLG41.

When this program is being run, a log dataset with 100 records is created. The first 15 lines look like this:

Log record # 00001
Log record # 00002 0 38ms
Log record # 00003 0 20µs
Log record # 00004 0 15µs
Log record # 00005 0 15µs
Log record # 00006 81µs 14µs
Log record # 00007 0 15µs
Log record # 00008 0 15µs
Log record # 00009 0 15µs
Log record # 00010 0 171µs
Log record # 00011 82µs 18µs
Log record # 00012 0 22µs
Log record # 00013 0 16µs
Log record # 00014 0 15µs
Log record # 00015 0 16µs

with the remaining 53 columns:

 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.325833
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364437
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364457
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364472
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364487
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364501
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364516
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364531
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364546
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364717
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364735
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364757
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364773
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364788
 SAMPLG41SAMPLG41E003 1 L 2015-03-16 11:04:58.364804

For each log record (except the first one) there are two time values recorded in columns 70 through 80.
These times are, however, written into the log record only if there is no logging data present in the space
they occupy so that any user data will not be overwritten.

The rightmost time is the elapsed time between two successive calls of SDLTRACE (computed difference
between the corresponding timestamps). The time to the left is the used CPU time as recorded by the
operating system in the TCB for this particular task. Since the system updates this field only when a task
switch takes place, there are many values showing zero, which indicates that the current task was not
interrupted by the system (no wait or interrupt, causing a task switch, occurred), nor did another task with
higher priority intervene. As a result the elapsed time to the right of a zero CPU value can also be taken
as the actual CPU time used.

SDLTRACE FOR COBOL

User Guide

 - 65 -

In the example above the time between successive calls to SDLTRACE is 15 to16 microseconds. As the
calling program is not doing anything except to increase the loop counter and then call the logging
module again, almost all of the time is being used by the log routine. Therefore the time it takes to record
a single log event is about 15 microseconds, which means that for every one million log records to be
written the system incurs an additional CPU load of about 15 seconds. Thus there is only a minimal
performance impact when using the SDLTRACE logging facility in production.

SDLTRACE FOR COBOL

User Guide

 - 66 -

So far we have just determined the execution times between two successive calls to the log routine.
In order to get the elapsed time between two specific places in the application program, special calls to
SDLTRACE have been provided: 'GET TRACE TIMESTAMP' and 'SET TRACE TIMESTAMP'.
Please look at the example program SAMPLH41:

 ID Division.

 Program-ID SAMPLH41.

 Data Division.

 Working-Storage Section.

 01 log-routine pic x(8) value 'LOGMOD41'.
 01 pgm-start-time pic x(80) value space.

 Procedure Division.

 move 'GET TRACE TIMESTAMP' to pgm-start-time
 call log-routine using pgm-start-time
 display pgm-start-time
 goback.

 end program SAMPLH41.

The log routine is called with an 80-byte log record containing the string 'GET TRACE TIMESTAMP'
starting in column 1. This is interpreted by SDLTRACE to not write another log record, but rather to
establish the start time for the next call where timing information is requested. In addition to setting the
start time internally in SDLTRACE the current timestamp is returned to the caller in the log record and can
be saved by the application for later use. In order to facilitate that, the 'GET' is changed to 'SET', and
the remainder of the record is completed with current time information. This record may be used by the
application to set a timing start point anywhere in the program.

When SAMPLH41 is run, no data is written to the logfile; however, a log dataset will nevertheless be
allocated to receive data that will be generated in subsequent calls. In this case there are none, so the
dataset stays empty. The only action by SDLTRACE is the generation of a timing start point by changing
the special log record and returning the data to the caller

The log record for the call to SDLTRACE contains the information:

GET TRACE TIMESTAMP

The log record returned by SDLTRACE and displayed in SYSOUT will contain the following information:

SET TRACE TIMESTAMP 2015-03-16 11:12:15.743899 N!Þ]F€gùµX~F§{é>³ê"&

Three changes can be seen;

 1. The verb “GET” has been changed to “SET”.
 2. In position 21 to 46 the current timestamp has been inserted.
 3. Positions 61 to 80 contain this timestamp in binary format.

This log record can be saved by the application program to be used later in a call to the log routine.
Similar to 'GET TRACE TIMESTAMP', a call to the log routine with 'SET TRACE TIMESTAMP' is
interpreted by SDLTRACE to not write another log record. Instead, the start time (that is used to compute
the elapsed time) is set to the timestamp (binary format) supplied in the 'SET TRACE TIMESTAMP'
statement. The next call to SDLTRACE will then compute the difference between this timestamp and the
current time.

The difference between the two statements 'GET TRACE TIMESTAMP' and 'SET TRACE TIMESTAMP'

SDLTRACE FOR COBOL

User Guide

 - 67 -

is this: 'GET' sets the timing start point to the current time, whereas 'SET' refers to a previously
obtained value.

Please note that only those values that have been obtained through a 'GET' are valid in a 'SET'
statement. Therefore the values in a returned 'SET' statement should never be changed.

For an example application program please look at program SAMPLI41:

 ID Division.

 Program-ID SAMPLI41.

 Data Division.

 Working-Storage Section.

 01 start-msg pic x(80) value 'Start of program'.
 01 end-msg pic x(80) value 'End of program'.
 01 log-data.
 05 log-rec pic x(13) value 'Log record # '.
 05 log-count pic 9(5) value zero.
 05 log-fill pic x(62) value space.
 01 log-routine pic x(8) value 'LOGMOD41'.
 01 wait pic x(8) value 'SDLWAIT'.
 01 wait-parm.
 05 pic s9(4) comp value 8.
 05 wait-time.
 10 wait-time-hh pic 9(2) value zero.
 10 wait-time-mm pic 9(2) value zero.
 10 wait-time-ss pic 9(2) value zero.
 10 wait-time-th pic 9(2) value 10.
 01 pgm-start-time pic x(80).
 01 current-time pic x(80).

 Procedure Division.

 call log-routine using start-msg
 move 'GET TRACE TIMESTAMP' to pgm-start-time
Call 1 call log-routine using pgm-start-time

 perform varying log-count from 1 by 1 until log-count > 10
 move 'GET TRACE TIMESTAMP' to current-time
Call 2 call log-routine using current-time
 call wait using wait-parm
 call log-routine using log-data
 end-perform

Call 3 call log-routine using pgm-start-time
 call log-routine using end-msg
 goback.

 end program SAMPLI41.

In the line marked “Call 1” the start time of the program is obtained and saved for later use.
In “Call 2” the current time is set as start for the computation of the elapsed time for each execution of
the statements in the loop. Since the time to wait has been set to 10 hundredths of a second there will be
a delay of 100 milliseconds, which is recorded in the log as total elapsed time for each turn through the
loop. The time used for the other statements is negligible by comparison. The actual CPU time used is
around 38 microseconds, taken from the value stored by the system in the TCB (Task Control Block).

The line marked “Call 3” resets the timestamp to the program start time so that the immediately

SDLTRACE FOR COBOL

User Guide

 - 68 -

following call to the log routine can compute the total elapsed time of 1 second. The total CPU time used
as stored in the TCB amounts to 484 microseconds.

When this program is run, the following log dataset will be generated:

Start of program
Log record # 00001 147µs 105ms
Log record # 00002 40µs 100ms
Log record # 00003 38µs 100ms
Log record # 00004 38µs 100ms
Log record # 00005 38µs 100ms
Log record # 00006 35µs 100ms
Log record # 00007 37µs 100ms
Log record # 00008 37µs 100ms
Log record # 00009 38µs 104ms
Log record # 00010 36µs 100ms
End of program 484µs 1.0s

with the remaining columns to the right:
 SAMPLI41SAMPLI41E003 1 L 2015-03-16 11:19:58.257692
 SAMPLI41SAMPLI41E003 1 L 2015-03-16 11:19:58.402735
 SAMPLI41SAMPLI41E003 1 L 2015-03-16 11:19:58.503446
 SAMPLI41SAMPLI41E003 1 L 2015-03-16 11:19:58.603536
 SAMPLI41SAMPLI41E003 1 L 2015-03-16 11:19:58.703599
 SAMPLI41SAMPLI41E003 1 L 2015-03-16 11:19:58.803663
 SAMPLI41SAMPLI41E003 1 L 2015-03-16 11:19:58.903728
 SAMPLI41SAMPLI41E003 1 L 2015-03-16 11:19:59.003937
 SAMPLI41SAMPLI41E003 1 L 2015-03-16 11:19:59.104088
 SAMPLI41SAMPLI41E003 1 L 2015-03-16 11:19:59.208739
 SAMPLI41SAMPLI41E003 1 L 2015-03-16 11:19:59.308816
 SAMPLI41SAMPLI41E003 1 L 2015-03-16 11:19:59.308840

There is a second parameter which can be set when computing execution times: “Timing threshold“.
This parameter specifies a value (in milliseconds) below which a computed elapsed time is not to be
recorded in the log record. For example, we want to exclude all values below 200ms from being written to
the log file and therefore set up a special logging module, LOGMOD42, accordingly. Please call up
ATRACE again and set the panel values as follows:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 7 of 7
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id.SDLTRACE.DEMO.COBOL_________________
Input member LOGMOD42
Output member LOGMXD42 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID SDLAPPL4 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 0___ (0-1440) Trace variables Y (Y/N)

Count duplicates N (Y/N) Include string #1 LOG-RECORD____________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing Y (Y/N) Exclude string #3 ______________________
Timing threshold __200 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

SDLTRACE FOR COBOL

User Guide

 - 69 -

The values in this panel are all identical to the one used before to create LGOMOD41, except that here
the timing threshold is set to 200 milliseconds. After processing this panel and then compiling and linking
LOGMOD42 we can run SAMPLG42 which is an exact copy of SAMPLI41, except that it is calling
LOGMOD42 instead of LOGMOD41. The resulting log file will show the following:

Start of program
Log record # 00001
Log record # 00002
Log record # 00003
Log record # 00004
Log record # 00005
Log record # 00006
Log record # 00007
Log record # 00008
Log record # 00009
Log record # 00010
End of program 449µs 1.0s

All elapsed time values below 200ms are being suppressed. Only the last line now contains timing
information, in this case 1.0 second for elapsed time and 449 microseconds for CPU time used.

Again, just as in the previous examples, the generation of the modules described above may be
performed in batch mode automatically, without having to enter any data into the ATRACE panel
manually. Please display the relevant members by specifying on the ISPF DSN display:

e user-id.SDLTRACE.DEMO.CNTL(SDLPRE4*)

The following members will be shown:

_________ SDLPRE41
_________ SDLPRE42

Just submit SDLPRE41 and SDLPRE42 by entering “j” on the command line. This will use the ATRACE
panel parameters defined in SDLPRC41 and SDLPRC42 to generate the logging modules LOGMOD41
and LOGMOD42.

The sample jobs in the COBOL library which use these modules will be displayed when specifying:

e user-id.SDLTRACE.DEMO.COBOL(SAMPL*4*)

on the ISPF DSN display. The following members should be shown:

_________ SAMPLG41
_________ SAMPLG42
_________ SAMPLH41
_________ SAMPLI41

These jobs can now be run to generate the example log datasets described in chapter 4 above.

SDLTRACE FOR COBOL

User Guide

 - 70 -

Chapter 5. Determining the names of calling programs

PLEASE NOTE: The examples in this chapter will not produce the intended results with COBOL 6.1
because of changes to the structure of the save-area made by IBM in the 6.1 release.
See also the Reference Manual, Paragraph 23, regarding the call-tree. (Remark Jan. 14, 2020, HL).

It is often necessary to find out which program calls a specific module or if a certain module is called at
all. This can easily be accomplished by inserting a call to logging into the program and specifying the
program’s name in the ATRACE panel in parameter “Pgm1“.

By default SDLTRACE inserts the name of the caller of the log routine into positions 81 to 88. Since this
is the name of our own program that calls the log routine there is no additional information to be gained.
However, the specification of a value in “Pgm1“ causes SDLTRACE to skip this name and step one level
higher up in the call chain and record that name instead. Thus by inserting a call to the log routine into
any application program we can determine who called us. A second and a third program name to be
skipped may be specified in the fields “Pgm2“ and “Pgm3“ .

In order to get the caller of a program we will set up the log module LOGMOD51. Just as in the preceding
examples please go to the library “user-id”.SDLTRACE.DEMO.CNTL, step down to member ATRACE
and type “ex” in front of it. Then please set the values according to the listing shown below. The main
difference to all previous panels is the value for Pgm1 , which is set to “SAMPLG51“ .

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 7 of 7
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id SDLTRACE.DEMO.COBOL_________________
Input member LOGMOD51
Output member LOGMXD51 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID SDLAPPL5 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 60__ (0-1440) Trace variables Y (Y/N)

Count duplicates N (Y/N) Include string #1 LOG-RECORD____________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 SAMPLG51 Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

Please make sure that the values are indeed as shown above, especially SAMPLG51 in the field Pgm1 .
To process the panel, just type “x” in the top right entry field and hit “Enter”. The following messages
will be displayed:

SDLTRACE - Version 4.5.23 16 Mar 2015 12:46:09 user-id
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=LOGGING
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------

SDLTRACE FOR COBOL

User Guide

 - 71 -

SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: LOGMOD51
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: LOGMXD51
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 38
SDLTRACE - MOVE TO variables: 1
SDLTRACE - Number of lines inserted: 128
SDLTRACE - Number of lines with trace: 166
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

Hitting “Enter” will display the new version of LOGMOD51, where the only difference to the original log
code where no value was specified for Pgm1 is the following line:

SDL#K MOVE 'SAMPLG51' TO SDLTR-SKIP-NAME1

This statement will cause SAMPLG51 to be skipped during the search in the chain of calling programs.
Please submit LOGMOD51 now to compile and link it. If the caller of this log module is SAMPLG51 then
SDLTRACE will look one step higher in the call chain and record that name instead.

For an example program that makes use of LOGMOD51 please look at program SAMPLG51 in library
“user-id”.SDLTRACE.DEMO.COBOL.

 ID Division.

 Program-ID SAMPLG51.

 Data Division.

 Working-Storage Section.
 01 log-data pic x(80).
 01 log-routine pic x(8) value 'LOGMOD51'.

 Procedure Division.
 move 'Example to determine caller' to log-data
 call log-routine using log-data
 goback.

 End Program SAMPLG51.

When this program is run, it will produce a log file with the following data:

Example to determine caller

with the remaining columns to the right:

 * SAMPLG51E003 1 L 2015-03-16 12:40:35.323903

The program name SAMPLG51 is not recorded as the caller of the log routine. Instead a simple asterisk
signifies that a caller of SAMPLG51 could not be found since the operating system itself started it.

Now please look at program SAMPLX51 in library “user-id”.SDLTRACE.DEMO.COBOL.

 ID Division.

 Program-ID SAMPLX51.

 Data Division.

SDLTRACE FOR COBOL

User Guide

 - 72 -

 Working-Storage Section.
 01 sample pic x(8) value 'SAMPLG51'.

 Procedure Division.
 call sample
 goback.

 End Program SAMPLX51.

There is a simple call to SAMPLG51, and the execution of this program will produce the following log line
in the log dataset:

Example to determine caller

with the remaining columns to the right:

 SAMPLX51SAMPLX51E003 1 L 2015-03-16 12:43:57.846372

In this case the caller of SAMPLG51 is SAMPLX51. Any other caller of SAMPLG51 will be recorded
similarly and it is thus possible to find all modules that use SAMPLG51. Since the exclusion of the name
SAMPLG51 is permanently compiled into the logging module LOGMOD51 the feature in this case is
available only for program SAMPLG51. Any other program using LOGMOD51 will therefore not get its
caller recorded. This can easily be changed, however, as shown in the following example.

Instead of building the logging module to permanently exclude a specific program name, we set up a
logging module which accepts a further parameter similar to a previous logging module where the
application-ID was set dynamically. The Cobol variable names to be used for exclusion are called
SDLTR-SKIP-NAME1, SDLTR-SKIP-NAME2 and SDLTR-SKIP-NAME3.

As an example just look at program LOGMOD52 in library “user-id”.SDLTRACE.DEMO.COBOL:

 Identification Division.

 Program-ID. LOGMOD52.

 Data Division.
 Working-Storage Section.
 01 Log-Record pic x(80).

 Linkage Section.
 01 Log-Data pic x(80).
 01 Log-Pgm1 pic x(8).

 Procedure Division using Log-data Log-Pgm1.
 Main.
 move Log-Pgm1 to SDLTR-SKIP-NAME1
 move Log-Data to Log-Record
 goback.

 End program LOGMOD52.

Here we see that in addition to the data to be logged the user is supplying the name of a program that
should be skipped by SDLTRACE when it is encountered in the caller-chain search since it is moved to
SDLTR-SKIP-NAME1. LOGMOD52 so far is only a skeleton, and we still have to complete it before it can
be used to log data. Again please go to the library “user-id”.SDLTRACE.DEMO.CNTL, step down to
member ATRACE and type “ex” in front of it. Then please set the values according to the listing shown
below.

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 7 of 7
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)

SDLTRACE FOR COBOL

User Guide

 - 73 -

Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id SDLTRACE.DEMO.COBOL_________________
Input member LOGMOD52
Output member LOGMXD52 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID SDLAPPL5 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 60__ (0-1440) Trace variables Y (Y/N)

Count duplicates N (Y/N) Include string #1 LOG-RECORD____________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

To process the panel, just type “x” in the top right entry field and hit “Enter”. The following messages
will be displayed:

SDLTRACE - Version 4.5.23 22 Mar 2015 11:07:48 user-id
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=LOGGING
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: LOGMOD52
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: LOGMXD52
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 41
SDLTRACE - MOVE TO variables: 1
SDLTRACE - Number of lines inserted: 127
SDLTRACE - Number of lines with trace: 168
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

Hitting “Enter” now will display the completed version of LOGMOD52:

 Identification Division.

 Program-ID. LOGMOD52.

 Data Division.
 Working-Storage Section.
SDL#***--***
SDL#Y 01 SDLTR-PARM GLOBAL.
SDL#Y 05 SDLTR-VALIDCHK-A PIC X(8) VALUE 'SDLTRACE'.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VERSION PIC X(8) VALUE 'VER 4.5 '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-DSN-HILEVEL PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-APPL-ID PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PGMNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.

SDLTRACE FOR COBOL

User Guide

 - 74 -

SDL#Y 05 SDLTR-JOBNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TYPE PIC X(5) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TEXT PIC X(50) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-START PIC X(8) VALUE 'PERFORM '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-END PIC X(8) VALUE '--END-- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-LABEL PIC X(8) VALUE '------- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PRI-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-SEC-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-VAR-LENGTH PIC 9(4) VALUE 31 BINARY.
SDL#Y 05 SDLTR-FLD-LENGTH PIC 9(4) VALUE 13 BINARY.
SDL#Y 05 SDLTR-THRESHOLD PIC 9(4) VALUE 0 BINARY.
SDL#Y 05 SDLTR-NEWTIM PIC 9(4) VALUE 1440 BINARY.
SDL#Y 05 SDLTR-RETN-CODE PIC 9(2) VALUE 0.
SDL#Y 05 SDLTR-RETN-CBIN PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TRACE PIC 9(1) VALUE 1.
SDL#Y 88 SDLTR-TRACE-ON VALUE 1.
SDL#Y 88 SDLTR-TRACE-OFF VALUE 0.
SDL#Y 05 SDLTR-CALLER PIC X(1) VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-ASM VALUE 'A'.
SDL#Y 88 SDLTR-CALLER-COBOL VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-C VALUE 'C'.
SDL#Y 05 SDLTR-VAR-TYPE PIC X(1) VALUE SPACE.
SDL#Y 88 SDLTR-VAR-TYPE-ALL VALUE ' '.
SDL#Y 88 SDLTR-VAR-TYPE-BIN VALUE 'B'.
SDL#Y 88 SDLTR-VAR-TYPE-CHR VALUE 'C'.
SDL#Y 88 SDLTR-VAR-TYPE-DEC VALUE 'D'.
SDL#Y 88 SDLTR-VAR-TYPE-HEX VALUE 'X'.
SDL#Y 05 SDLTR-TIMESTAMP PIC X(1) VALUE 'L'.
SDL#Y 88 SDLTR-TMSTP-GMT VALUE 'G'.
SDL#Y 88 SDLTR-TMSTP-LOC VALUE 'L'.
SDL#Y 05 SDLTR-WRITE-IMM PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-WRITE-IMM-ON VALUE 1.
SDL#Y 88 SDLTR-WRITE-IMM-OFF VALUE 0.
SDL#Y 05 SDLTR-CONS-MSG-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-CONS-MSG-OFF VALUE 1.
SDL#Y 88 SDLTR-CONS-MSG-ON VALUE 0.
SDL#Y 05 SDLTR-TIMING-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TIMING-ON VALUE 1.
SDL#Y 88 SDLTR-TIMING-OFF VALUE 0.
SDL#Y 05 SDLTR-TRACECTL PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TRACECTL-ON VALUE 1.
SDL#Y 88 SDLTR-TRACECTL-OFF VALUE 0.
SDL#Y 05 SDLTR-LOG-MODE-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-LOG-MODE-ON VALUE 1.
SDL#Y 88 SDLTR-LOG-MODE-OFF VALUE 0.
SDL#Y 05 SDLTR-DUPLICAT-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-DUPLICAT-ON VALUE 1.
SDL#Y 88 SDLTR-DUPLICAT-OFF VALUE 0.
SDL#Y 05 SDLTR-SKIP-NAME1 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME2 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME3 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-RESERVED PIC X(18) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SYSTEM-AREA PIC X(1800) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VALIDCHK-Z PIC X(8) VALUE 'SDLTRACE'.
SDL#Y

SDLTRACE FOR COBOL

User Guide

 - 75 -

SDL#Y 01 SDLTR-WORK GLOBAL.
SDL#Y 05 SDLTR-LENGTH PIC S9(9) BINARY.
SDL#Y 05 SDLTR-SAVERC PIC S9(4) BINARY.
SDL#Y 05 SDLTR-INDEX1 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX2 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX1-NUM PIC 9(8).
SDL#Y 05 SDLTR-INDEX2-NUM PIC 9(8).
SDL#Y 05 SDLTR-SET-TRUE PIC X(4) VALUE 'TRUE'.
SDL#Y 05 SDLTR-GEN-DATE PIC X(11) VALUE '22 Mar 2015'.
SDL#Y 05 SDLTRACE PIC X(8) VALUE 'SDLTRACE'.
SDL#***--***
 01 Log-Record pic x(80).

 Linkage Section.
 01 Log-Data pic x(80).
 01 Log-Pgm1 pic x(8).

 Procedure Division using Log-data Log-Pgm1.
SDL#***--***
SDL#A START-TRACE-INITIALIZATION.
SDL#S MOVE 'START' TO SDLTR-TYPE
SDL#N MOVE 'LOGMOD52' TO SDLTR-PGMNAME
SDL#K MOVE 'user-id ' TO SDLTR-DSN-HILEVEL
SDL#K MOVE 'SDLAPPL5' TO SDLTR-APPL-ID
SDL#K MOVE '* ' TO SDLTR-JOBNAME
SDL#K MOVE 0 TO SDLTR-THRESHOLD
SDL#K MOVE 100 TO SDLTR-PRI-TRKS
SDL#K MOVE 100 TO SDLTR-SEC-TRKS
SDL#K MOVE 60 TO SDLTR-NEWTIM
SDL#K SET SDLTR-WRITE-IMM-OFF TO TRUE
SDL#K SET SDLTR-TRACECTL-OFF TO TRUE
SDL#K SET SDLTR-CONS-MSG-ON TO TRUE
SDL#K SET SDLTR-LOG-MODE-ON TO TRUE
SDL#K SET SDLTR-DUPLICAT-OFF TO TRUE
SDL#K SET SDLTR-TIMING-OFF TO TRUE
SDL#K SET SDLTR-TMSTP-LOC TO TRUE
SDL#K SET SDLTR-TRACE-ON TO TRUE
SDL#R * MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#C * CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#O * MOVE SDLTR-SAVERC TO RETURN-CODE.
SDL#D .
SDL#***--***
 Main.
 move Log-Pgm1 to SDLTR-SKIP-NAME1
 move Log-Data to Log-Record
SDL#***--***
SDL#R MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#I MOVE 'V1' TO SDLTR-TYPE
SDL#F MOVE 'Log-Record' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE Log-Record
SDL#H BY CONTENT LENGTH OF Log-Record
SDL#E END-CALL
SDL#O MOVE SDLTR-SAVERC TO RETURN-CODE
SDL#***--***
SDL#***--***
SDL#R * MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#Z * MOVE 'STOP ' TO SDLTR-TYPE
SDL#C * CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#O * MOVE SDLTR-SAVERC TO RETURN-CODE
SDL#***--***
 goback.

 End program LOGMOD52.

SDLTRACE FOR COBOL

User Guide

 - 76 -

Please submit this for compilation and linking. The new source code will be saved under the name of
LOGMXD52 automatically when exiting edit mode by hitting PF3.

The program to test this log module is SAMPLG52:

 ID Division.

 Program-ID SAMPLG52.

 Data Division.

 Working-Storage Section.
 01 log-data pic x(80).
 01 log-routine pic x(8) value 'LOGMOD52'.
 01 skip-pgm-name pic x(8) value 'SAMPLG52'.

 Procedure Division.
 move 'Determine caller of caller' to log-data
 call log-routine using log-data skip-pgm-name
 goback.

 End Program SAMPLG52.

Please run this program; since the caller of LOGMOD52 is SAMPLG52, which is excluded from the
search of calling programs, an asterisk ‘*’ is listed to signify that there is no caller (besides the operating
system of course). If SAMPLG52 itself is called by another program, then the name of that program will
be listed as caller of the logging routine. To check that please run SAMPLX52:

 ID Division.

 Program-ID SAMPLX52.

 Data Division.

 Working-Storage Section.
 01 sample pic x(8) value 'SAMPLG52'.

 Procedure Division.
 call sample
 goback.

 End Program SAMPLX52.

Execution of this program will create a logfile which will show SAMPLX52 as caller of the log routine
although it is not calling the log module directly, bur rather via SAMPLG52:

Determine caller of caller

with the remaining columns to the right:

 SAMPLX52SAMPLX52E003 1 L 2015-03-28 10:11:31.442648

With the use of LOGMOD52 any application program can use logging to find out by whom it is called. The
only requirement is that the application supplies its own name (similar to the code in SAMPLG52) in order
to have it skipped during the call chain search. Up to three names may be specified to be skipped in this
way by building corresponding log modules, which makes it possible to determine the originator of a call
two levels further up in the chain.

Again, just as in the previous examples, the generation of the modules described above may be
performed in batch mode automatically without having to enter any data into the ATRACE panel

SDLTRACE FOR COBOL

User Guide

 - 77 -

manually. Please display the relevant members by specifying on the ISPF DSN display:

e user-id.SDLTRACE.DEMO.CNTL(SDLPRE5*)

The following members will be shown:

_________ SDLPRE51
_________ SDLPRE52

Just submit SDLPRE51 and SDLPRE52 by entering “j” on the command line. This will use the ATRACE
panel parameters defined in SDLPRC51 and SDLPRC52 to generate the logging modules LOGMOD51
and LOGMOD52.

The sample jobs in the COBOL library which use these modules will be displayed when specifying:

e user-id.SDLTRACE.DEMO.COBOL(SAMPL*5*)

on the ISPF DSN display. The following members should be shown:

_________ SAMPLG51
_________ SAMPLG52
_________ SAMPLX51
_________ SAMPLX52

These jobs can now be run to generate the example log datasets described in chapter 5 above.

SDLTRACE FOR COBOL

User Guide

 - 78 -

Chapter 6. Obtaining the current log-record

Sometimes it might be of interest to an application to know what the log-record that has just been written
to the logfile looks like, especially the timestamp that was stored. For this purpose there is a special
feature available in SDLTRACE logging which is enabled automatically if the log-record is exactly 213
bytes long, rather than the usual 80 bytes. For an example please look at LOGMOD61 in library
“user-id”.SDLTRACE.DEMO.COBOL:

 Identification Division.

 Program-ID. LOGMOD61.

 Data Division.
 Working-Storage Section.
 01 Log-Record pic x(213).

 Linkage Section.
 01 Log-Data.
 05 Log-Rec-Data pic x(80).
 05 Log-Rec-stored pic x(133).

 Procedure Division using Log-data.
 Main.
 move Log-Data to Log-Record
 move Log-Record to Log-Data
 goback.

 End program LOGMOD61.

In order to generate the interface to SDLTRACE for program LOGMOD61 please go to the library
“user-id”.SDLTRACE.DEMO.CNTL, step down to member ATRACE and type “ex” in front of it. Then
please set the values according to the listing shown below.

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 8 of 8
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id SDLTRACE.DEMO.COBOL_________________
Input member LOGMOD61
Output member LOGMXD61 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID SDLAPPL6 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 60__ (0-1440) Trace variables Y (Y/N)

Count duplicates N (Y/N) Include string #1 LOG-RECORD____________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

SDLTRACE FOR COBOL

User Guide

 - 79 -

To process the panel, just type “x” in the top right entry field and hit “Enter”. The following messages
will be displayed:

SDLTRACE - Version 4.5.23 20 Apr 2015 10:32:59 user-id
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=LOGGING
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: LOGMOD61
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: LOGMXD61
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 41
SDLTRACE - MOVE TO variables: 1
SDLTRACE - Number of lines inserted: 127
SDLTRACE - Number of lines with trace: 168
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

Hitting “Enter” now will display the completed version of LOGMOD61. Just submit it to compile and link
it, then hit SPF3, which will store the source code under the name LOGMXD61. LOGMOD61 is similar to
the previous logging modules, except that SDLTRACE will return the contents of the created log record in
the field Log-Rec-stored. To check that, please go to program SAMPLG61 in library
“user-id”.SDLTRACE.DEMO.COBOL:.

 ID Division.

 Program-ID SAMPLG61.

 Data Division.

 Working-Storage Section.
 01 Log-Data.
 05 Log-Rec-Data pic x(80).
 05 Log-Rec-stored pic x(133).
 01 log-routine pic x(8) value 'LOGMOD61'.

 Procedure Division.
 move 'Example to show returned log-record' to Log-Rec-Data
 call log-routine using log-data
 display 'The created log-record is:'
 display Log-Rec-stored
 goback.

 End Program SAMPLG61.

When this job is run a logfile will be allocated and the data together with the log information will be stored
just as in the previous examples. In addition the job output (SYSOUT) will contain an exact copy of the
record that was written to the logfile.

SDLTRACE FOR COBOL

User Guide

 - 80 -

Again, just as in the previous examples, the generation of the modules described above may be
performed in batch mode automatically, without having to enter any data into the ATRACE panel
manually. Please display the relevant members by specifying on the ISPF DSN display:

e user-id.SDLTRACE.DEMO.CNTL(SDLPRE6*)

The following member will be shown:

_________ SDLPRE61

Just submit SDLPRE61 by entering “j” on the command line. This will use the ATRACE panel parameters
defined in SDLPRC61 to generate the logging module LOGMOD61.

The sample job in the COBOL library which uses this module will be displayed when specifying:

e user-id.SDLTRACE.DEMO.COBOL(SAMPLG6*)

on the ISPF DSN display. The following member should be shown:

_________ SAMPLG61

This job can now be run to generate the example log dataset and the output in SYSOUT described in
chapter 6 above.

SDLTRACE FOR COBOL

User Guide

 - 81 -

Chapter 7. Direct logging of an application program

All the examples above used a special log-module to call SDLTRACE, which in most cases is probably
the easiest way since most of the trace code is kept separate from the application itself. However,
sometimes the setup may be faster without a special log module. To log directly from within an application
program we use the same procedure as that for tracing, except that logging is specified as operating
mode and a special variable is set up to receive the log data. For an example please look at program
SAMPLG71 in library “user-id”.SDLTRACE.DEMO.COBOL:.

 ID DIVISION.

 PROGRAM-ID SAMPLG71.

 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 CHARACTER-DATA PIC X(20) VALUE SPACE.
 01 CHARACTER-DATA-LONG PIC X(256) VALUE SPACE.
 01 NUMERIC-DATA-UNSIGNED PIC 9(8) VALUE ZERO.
 01 NUMERIC-DATA-SIGNED-POSITIVE PIC S9(8) VALUE ZERO.
 01 NUMERIC-DATA-SIGNED-NEGATIVE PIC S9(8) VALUE ZERO.
 01 DECIMAL-DATA-UNSIGNED PIC 9(7) COMP-3 VALUE ZERO.
 01 DECIMAL-DATA-SIGNED-POSITIVE PIC S9(7) COMP-3 VALUE ZERO.
 01 DECIMAL-DATA-SIGNED-NEGATIVE PIC S9(7) COMP-3 VALUE ZERO.
 01 BINARY-DATA PIC S9(9) BINARY VALUE ZERO.
 01 LOG-RECORD PIC X(80).

 PROCEDURE DIVISION.
 MOVE 'Hello, COBOL!' TO CHARACTER-DATA
 MOVE 'This is character data that extends over more than one
 - 'line and shows how data is displayed on several lines'
 TO CHARACTER-DATA-LONG
 MOVE 123 TO NUMERIC-DATA-UNSIGNED
 MOVE 456 TO NUMERIC-DATA-SIGNED-POSITIVE
 MOVE -789 TO NUMERIC-DATA-SIGNED-NEGATIVE
 MOVE 123 TO DECIMAL-DATA-UNSIGNED
 MOVE 456 TO DECIMAL-DATA-SIGNED-POSITIVE
 MOVE -789 TO DECIMAL-DATA-SIGNED-NEGATIVE
 MOVE 123456789 TO BINARY-DATA
 MOVE 'SAMPLG71 was executed' TO LOG-RECORD
 GOBACK.

 END PROGRAM SAMPLG71.

This program is identical to the first example for tracing, except for the two additional lines: the first one
defining LOG-RECORD and the second one moving text into it. Just as for the log modules above we
now generate the interface for SDLTRACE. Please go to the library “user-id”.SDLTRACE.DEMO.CNTL,
step down to member ATRACE and type “ex” in front of it. Then please set the values according to the
listing shown below.

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 9 of 9
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id SDLTRACE.DEMO.COBOL_________________
Input member SAMPLG71
Output member SAMPLX71 Insert/Remove/Edit I (I/R/E)

SDLTRACE FOR COBOL

User Guide

 - 82 -

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID SDLAPPL7 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 60__ (0-1440) Trace variables Y (Y/N)

Count duplicates N (Y/N) Include string #1 LOG-RECORD____________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

To process the panel, just type “x” in the top right entry field and hit “Enter”. The following messages
will be displayed:

SDLTRACE - Version 4.5.23 30 May 2015 08:48:13 user-id
SDLTRACE - Parameter file: user-id.SDLTRACE.DEMO.CNTL(SDLPRCTL)
SDLTRACE - Action=INSERT Mode=LOGGING
SDLTRACE - CALLS will be inserted for:
SDLTRACE - -> SDLTRACE communication area
SDLTRACE - -> Variables after MOVE ... TO
SDLTRACE - ------------------------------------
SDLTRACE - Input library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Input module: SAMPLG71
SDLTRACE - Output library: user-id.SDLTRACE.DEMO.COBOL
SDLTRACE - Output module: SAMPLX71
SDLTRACE - ------------------------------------
SDLTRACE - Number of lines in original: 59
SDLTRACE - MOVE TO variables: 1
SDLTRACE - Number of lines inserted: 127
SDLTRACE - Number of lines with trace: 186
SDLTRACE - ------------------------------------
SDLTRACE - End of process RC=0

Hitting “Enter” now will display the completed version of SAMPLG71:

 ID DIVISION.

 PROGRAM-ID SAMPLG71.

 DATA DIVISION.

 WORKING-STORAGE SECTION.
SDL#***--***
SDL#Y 01 SDLTR-PARM GLOBAL.
SDL#Y 05 SDLTR-VALIDCHK-A PIC X(8) VALUE 'SDLTRACE'.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VERSION PIC X(8) VALUE 'VER 4.5 '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-DSN-HILEVEL PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-APPL-ID PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PGMNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-JOBNAME PIC X(8) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.

SDLTRACE FOR COBOL

User Guide

 - 83 -

SDL#Y 05 SDLTR-TYPE PIC X(5) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TEXT PIC X(50) VALUE SPACE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-START PIC X(8) VALUE 'PERFORM '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PERF-END PIC X(8) VALUE '--END-- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-LABEL PIC X(8) VALUE '------- '.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-PRI-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-SEC-TRKS PIC 9(4) VALUE 250 BINARY.
SDL#Y 05 SDLTR-VAR-LENGTH PIC 9(4) VALUE 31 BINARY.
SDL#Y 05 SDLTR-FLD-LENGTH PIC 9(4) VALUE 13 BINARY.
SDL#Y 05 SDLTR-THRESHOLD PIC 9(4) VALUE 0 BINARY.
SDL#Y 05 SDLTR-NEWTIM PIC 9(4) VALUE 1440 BINARY.
SDL#Y 05 SDLTR-RETN-CODE PIC 9(2) VALUE 0.
SDL#Y 05 SDLTR-RETN-CBIN PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-TRACE PIC 9(1) VALUE 1.
SDL#Y 88 SDLTR-TRACE-ON VALUE 1.
SDL#Y 88 SDLTR-TRACE-OFF VALUE 0.
SDL#Y 05 SDLTR-CALLER PIC X(1) VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-ASM VALUE 'A'.
SDL#Y 88 SDLTR-CALLER-COBOL VALUE 'B'.
SDL#Y 88 SDLTR-CALLER-C VALUE 'C'.
SDL#Y 05 SDLTR-VAR-TYPE PIC X(1) VALUE SPACE.
SDL#Y 88 SDLTR-VAR-TYPE-ALL VALUE ' '.
SDL#Y 88 SDLTR-VAR-TYPE-BIN VALUE 'B'.
SDL#Y 88 SDLTR-VAR-TYPE-CHR VALUE 'C'.
SDL#Y 88 SDLTR-VAR-TYPE-DEC VALUE 'D'.
SDL#Y 88 SDLTR-VAR-TYPE-HEX VALUE 'X'.
SDL#Y 05 SDLTR-TIMESTAMP PIC X(1) VALUE 'L'.
SDL#Y 88 SDLTR-TMSTP-GMT VALUE 'G'.
SDL#Y 88 SDLTR-TMSTP-LOC VALUE 'L'.
SDL#Y 05 SDLTR-WRITE-IMM PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-WRITE-IMM-ON VALUE 1.
SDL#Y 88 SDLTR-WRITE-IMM-OFF VALUE 0.
SDL#Y 05 SDLTR-CONS-MSG-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-CONS-MSG-OFF VALUE 1.
SDL#Y 88 SDLTR-CONS-MSG-ON VALUE 0.
SDL#Y 05 SDLTR-TIMING-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TIMING-ON VALUE 1.
SDL#Y 88 SDLTR-TIMING-OFF VALUE 0.
SDL#Y 05 SDLTR-TRACECTL PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-TRACECTL-ON VALUE 1.
SDL#Y 88 SDLTR-TRACECTL-OFF VALUE 0.
SDL#Y 05 SDLTR-LOG-MODE-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-LOG-MODE-ON VALUE 1.
SDL#Y 88 SDLTR-LOG-MODE-OFF VALUE 0.
SDL#Y 05 SDLTR-DUPLICAT-IND PIC 9(1) VALUE 0.
SDL#Y 88 SDLTR-DUPLICAT-ON VALUE 1.
SDL#Y 88 SDLTR-DUPLICAT-OFF VALUE 0.
SDL#Y 05 SDLTR-SKIP-NAME1 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME2 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SKIP-NAME3 PIC X(8) VALUE LOW-VALUE.
SDL#Y 05 PIC X(1) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-RESERVED PIC X(18) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-SYSTEM-AREA PIC X(1800) VALUE LOW-VALUE.
SDL#Y 05 SDLTR-VALIDCHK-Z PIC X(8) VALUE 'SDLTRACE'.
SDL#Y
SDL#Y 01 SDLTR-WORK GLOBAL.
SDL#Y 05 SDLTR-LENGTH PIC S9(9) BINARY.

SDLTRACE FOR COBOL

User Guide

 - 84 -

SDL#Y 05 SDLTR-SAVERC PIC S9(4) BINARY.
SDL#Y 05 SDLTR-INDEX1 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX2 PIC ZZZZZZZ9.
SDL#Y 05 SDLTR-INDEX1-NUM PIC 9(8).
SDL#Y 05 SDLTR-INDEX2-NUM PIC 9(8).
SDL#Y 05 SDLTR-SET-TRUE PIC X(4) VALUE 'TRUE'.
SDL#Y 05 SDLTR-GEN-DATE PIC X(11) VALUE '30 May 2015'.
SDL#Y 05 SDLTRACE PIC X(8) VALUE 'SDLTRACE'.
SDL#***--***
 01 CHARACTER-DATA PIC X(20) VALUE SPACE.
 01 CHARACTER-DATA-LONG PIC X(256) VALUE SPACE.
 01 NUMERIC-DATA-UNSIGNED PIC 9(8) VALUE ZERO.
 01 NUMERIC-DATA-SIGNED-POSITIVE PIC S9(8) VALUE ZERO.
 01 NUMERIC-DATA-SIGNED-NEGATIVE PIC S9(8) VALUE ZERO.
 01 DECIMAL-DATA-UNSIGNED PIC 9(7) COMP-3 VALUE ZERO.
 01 DECIMAL-DATA-SIGNED-POSITIVE PIC S9(7) COMP-3 VALUE ZERO.
 01 DECIMAL-DATA-SIGNED-NEGATIVE PIC S9(7) COMP-3 VALUE ZERO.
 01 BINARY-DATA PIC S9(9) BINARY VALUE ZERO.
 01 LOG-RECORD PIC X(80).

 PROCEDURE DIVISION.
SDL#***--***
SDL#A START-TRACE-INITIALIZATION.
SDL#S MOVE 'START' TO SDLTR-TYPE
SDL#N MOVE 'SAMPLG71' TO SDLTR-PGMNAME
SDL#K MOVE 'user-id ' TO SDLTR-DSN-HILEVEL
SDL#K MOVE 'SDLAPPL7' TO SDLTR-APPL-ID
SDL#K MOVE '* ' TO SDLTR-JOBNAME
SDL#K MOVE 0 TO SDLTR-THRESHOLD
SDL#K MOVE 100 TO SDLTR-PRI-TRKS
SDL#K MOVE 100 TO SDLTR-SEC-TRKS
SDL#K MOVE 60 TO SDLTR-NEWTIM
SDL#K SET SDLTR-WRITE-IMM-OFF TO TRUE
SDL#K SET SDLTR-TRACECTL-OFF TO TRUE
SDL#K SET SDLTR-CONS-MSG-ON TO TRUE
SDL#K SET SDLTR-LOG-MODE-ON TO TRUE
SDL#K SET SDLTR-DUPLICAT-OFF TO TRUE
SDL#K SET SDLTR-TIMING-OFF TO TRUE
SDL#K SET SDLTR-TMSTP-LOC TO TRUE
SDL#K SET SDLTR-TRACE-ON TO TRUE
SDL#R * MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#C * CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#O * MOVE SDLTR-SAVERC TO RETURN-CODE.
SDL#D .
SDL#***--***
 MOVE 'Hello, COBOL!' TO CHARACTER-DATA
 MOVE 'This is character data that extends over more than one
 - 'line and shows how data is displayed on several lines'
 TO CHARACTER-DATA-LONG
 MOVE 123 TO NUMERIC-DATA-UNSIGNED
 MOVE 456 TO NUMERIC-DATA-SIGNED-POSITIVE
 MOVE -789 TO NUMERIC-DATA-SIGNED-NEGATIVE
 MOVE 123 TO DECIMAL-DATA-UNSIGNED
 MOVE 456 TO DECIMAL-DATA-SIGNED-POSITIVE
 MOVE -789 TO DECIMAL-DATA-SIGNED-NEGATIVE
 MOVE 123456789 TO BINARY-DATA
 MOVE 'SAMPLG71 was executed' TO LOG-RECORD
SDL#***--***
SDL#R MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#I MOVE 'V1' TO SDLTR-TYPE
SDL#F MOVE 'LOG-RECORD' TO SDLTR-TEXT
SDL#C CALL SDLTRACE USING SDLTR-PARM
SDL#V BY REFERENCE LOG-RECORD
SDL#H BY CONTENT LENGTH OF LOG-RECORD

SDLTRACE FOR COBOL

User Guide

 - 85 -

SDL#E END-CALL
SDL#O MOVE SDLTR-SAVERC TO RETURN-CODE
SDL#***--***
SDL#***--***
SDL#R * MOVE RETURN-CODE TO SDLTR-SAVERC
SDL#Z * MOVE 'STOP ' TO SDLTR-TYPE
SDL#C * CALL SDLTRACE USING SDLTR-PARM END-CALL
SDL#O * MOVE SDLTR-SAVERC TO RETURN-CODE
SDL#***--***
 GOBACK.

 END PROGRAM SAMPLG71.

Just submit the program above for compilation, linking and execution, then hit SPF3 to store the source
code under the name SAMPLGX71 into the library. “user-id”.SDLTRACE.DEMO.COBOL.
Since the GO-step was included in the JCL the program will be executed right away and produces a log-
dataset with the following contents:

SAMPLG71 was executed
 SAMPLG71SAMPLG71E003 1 L 2015-05-30 09:10:14.431773

It is also possible to combine tracing and logging within one program. Take for example the program
SAMPLG72. It is identical to SAMPLG71, except that we now apply the values from the following
ATRACE panel:

SDLTRACE V4.5 09/13/05 COBOL PREPROCESSOR
 Screen 9 of 9
Run Jcl or eXec now or Delete or display Next/Previous screen: _ (J X D N P)
 (or: I/R/E)
Input dataset user-id.SDLTRACE.DEMO.COBOL_________________
Output dataset user-id SDLTRACE.DEMO.COBOL_________________
Input member SAMPLG72
Output member SAMPLX72 Insert/Remove/Edit I (I/R/E)

DSN qualifier user-id Trace/Log mode L (T/L)
Application-ID SDLAPPL7 Trace PERFORM N (Y/N)
JOB-ID check *_______ Trace PERFORM end N (Y/N)
DSN alloc (tracks) 100_ (1-9999) Trace labels N (Y/N)
DSN time (minutes) 60__ (0-1440) Trace variables Y (Y/N)

Count duplicates N (Y/N) Include string #1 ______________________
Console messages Y (Y/N) Include string #2 ______________________
Save RETURN-CODE Y (Y/N) Include string #3 ______________________
Enable CICS test N (Y/N) Exclude string #1 ______________________
Local time / GMT L (L/G) Exclude string #2 ______________________
Enable timing N (Y/N) Exclude string #3 ______________________
Timing threshold ____0 (0-32767 ms) Pgm1 ________ Pgm2 ________ Pgm3 ________

F3 = Quit ENTER = Process input

The only difference to the previous panel for SAMPLG71 is the specification line:

Include string #1 ______________________

which now does not contain anything, whereas before we specified the variable LOG-RECORD in order to
limit the inclusion of only those move statements that involve LOG-RECORD . As a result all variable
changes will trigger the inclusion of code to call SDLTRACE, and although log-mode is specified, only
those variables which are exactly 80 bytes long will be treated as log entries; all others are handled as if
we were in trace mode. Thus execution of SAMPLG72 after processing by ATRACE will show the
following contents in the log dataset:

V1 CHARACTER-DATA Hello, COBOL!

SDLTRACE FOR COBOL

User Guide

 - 86 -

V2 CHARACTER-DATA-LONG 0 This is character data that extends over
V2 41 * more than one line and shows how data i
V2 82 * s displayed on several lines
V2 123 *
V2 = 3 IDENTICAL LINES -
V3 NUMERIC-DATA-UNSIGNED 00000123
V4 NUMERIC-DATA-SIGNED-POSITIVE +00000456
V5 NUMERIC-DATA-SIGNED-NEGATIVE -00000789
V6 DECIMAL-DATA-UNSIGNED P 0000123
V7 DECIMAL-DATA-SIGNED-POSITIVE P+0000456
V8 DECIMAL-DATA-SIGNED-NEGATIVE P-0000789
V9 BINARY-DATA B 123456789
SAMPLG72 was executed

with the rightmost part:

 SAMPLG72 1 1 T 2015-05-30 12:43:21.086684
 SAMPLG72 1 2 T 2015-05-30 12:43:21.132253
 SAMPLG72 1 3 T 2015-05-30 12:43:21.132253
 SAMPLG72 1 4 T 2015-05-30 12:43:21.132253
 SAMPLG72 1 5 T 2015-05-30 12:43:21.132253
 - - - - - - - - - - - - - SAMPLG72 3 8 T 2015-05-30 12:43:21.132253
 SAMPLG72 1 9 T 2015-05-30 12:43:21.132270
 SAMPLG72 1 10 T 2015-05-30 12:43:21.132278
 SAMPLG72 1 11 T 2015-05-30 12:43:21.132286
 SAMPLG72 1 12 T 2015-05-30 12:43:21.132293
 SAMPLG72 1 13 T 2015-05-30 12:43:21.132301
 SAMPLG72 1 14 T 2015-05-30 12:43:21.132308
 SAMPLG72 1 15 T 2015-05-30 12:43:21.132315
 SAMPLG72SAMPLG72E003 1 L 2015-05-30 12:43:21.132323

Except for the last line which shows the log data, all other lines are standard trace entries just as in the
very first example generated by program SAMPLB01. Thus log and trace data may be mixed together,
although it is probably better to have separate datasets, one for trace and one for log data. This can be
achieved easily by creating a special log module for all logging requests, just as in the examples shown.

Again, just as in the previous examples, the generation of the modules described above may be
performed in batch mode automatically, without having to enter any data into the ATRACE panel
manually. Please display the relevant members by specifying on the ISPF DSN display:

e user-id.SDLTRACE.DEMO.CNTL(SDLPRE7*)

The following members will be shown:

_________ SDLPRE71
_________ SDLPRE72

Just submit SDLPRE71 and SDLPRE72 by entering “j” on the command line. This will use the ATRACE
panel parameters defined in SDLPRC71 and SDLPRC72 to generate and run the application programs
SAMPLG71 and SAMPLG72. Since logging is specified within the user’s program directly, no separate run
of an application calling these programs is necessary. The example log datasets described in chapter 7
above will have been generated as soon as the two jobs are finished.

All log modules required for the axamples described above can also be generated by submitting the job
SDLPRE00 out of library user-id.SDLTRACE.DEMO.CNTL , and all example jobs may be run by
submitting SDLSARUN.

SDLTRACE FOR COBOL

User Guide

 - 87 -

Chapter 8. Differences between tracing and logging

Most of the features of SDLTRACE apply to both, tracing and logging. The differences between the two
modes are in these five areas: Dataset naming conventions, the formatting of variables, the display of
execution times, determination of the calling program and the disposition of the trace/log datasets after
termination of the current trace/log action.

1. Dataset naming conventions:

In trace mode the last character of the trace/log dataset name is “A”, “B” or “C”, whereas in log mode it is
always “L”.

2. Formatting of variables

In log mode all variables of length 80 (or an exact multiple of 80) are not formatted according to their type
and the variable names are not displayed at all; instead the variable content is moved to the log record as
is without any modification (except the insertion of execution times, if desired).

3. Display of execution times

In trace mode the execution times are displayed in separate records whereas in log mode the times are
inserted into the log record (if the relevant area is blank).

4. Determination of the calling program

In log mode the name of the calling program is inserted into the log record (and optionally the caller of the
caller, etc.). In trace mode the name of the program being traced is displayed rather than the caller.

5. Disposition of the trace/log datasets

In trace mode the trace dataset is closed upon exit from the module being traced and re-opened when the
module is entered again. In log mode the log dataset is not closed when the module being logged is
returning control to its caller. Closing of log datasets is performed depending on space and time
parameters set on the ATRACE panel.

	Introduction to Trace Facility for COBOL
	Chapter 1. Tracing a simple COBOL program
	Chapter 2. Tracing PERFORMs, labels, etc.
	Chapter 3. Tracing variables with indices
	Chapter 4. Measuring execution times
	Chapter 5. Controlling the allocation of trace datasets

	Introduction to Logging Facility for COBOL
	Chapter 1. Preparing a COBOL program for logging
	Chapter 2. Controlling the allocation of log datasets
	Chapter 3. Logging large data items
	Chapter 4. Measuring execution times
	Chapter 5. Determining the names of calling programs
	Chapter 6. Obtaining the current log-record
	Chapter 7. Direct logging of an application program
	Chapter 8. Differences between tracing and logging

